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Abstract: The utility and adoption of indoor localization applications have been limited
due to the complex nature of the physical environment combined with an increasing
requirement for more robust localization performance. Existing solutions to this problem
are either too expensive or too dependent on infrastructure such as Wi-Fi access points.
To address this problem, we propose APFiLoc—a low cost, smartphone-based framework
for indoor localization. The key idea behind this framework is to obtain landmarks within the
environment and to use the augmented particle filter to fuse them with measurements from
smartphone sensors and map information. A clustering method based on distance constraints
is developed to detect organic landmarks in an unsupervised way, and the least square support
vector machine is used to classify seed landmarks. A series of real-world experiments were
conducted in complex environments including multiple floors and the results show APFiLoc
can achieve 80% accuracy (phone in the hand) and around 70% accuracy (phone in the
pocket) of the error less than 2 m error without the assistance of infrastructure like Wi-Fi
access points.
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1. Introduction

Location is the most crucial context in mobile and ubiquitous computing [1], and how to obtain and
infer the location is the key to location-aware applications. Indoor environments are main scenarios
of people’s activity and it is estimated that about 87 percent of people’s time [2] are spent indoors.
Nowadays location-based context-aware systems such as mobile social network [3], Internet of Things
(IoT) [4] have no longer been restricted in outdoor environments and are extending to indoor spaces.
Compared to outdoor environments, indoor space is more complicated in terms of layout, topology
and space constraint, and presents some particular characteristics [5]. For example, indoor space is
closed and has the constraint from indoor components. This leads to the problem that Global Navigation
Satellite Systems (e.g., GPS, GLONASS, BEIDOU) cannot work indoors. Meanwhile, localization
solutions exploiting mobile communication network can not meet the demand for high accuracy of
indoor applications.

In recent decades, researchers have developed many indoor localization solutions [6–11], which differ
with each other in terms of localization techniques used, coverage, accuracy, and cost of deployment and
maintenance. Wi-Fi location fingerprinting is one of the most widely used indoor localization techniques
since it can make use of existing Wi-Fi infrastructure and provide a relatively ideal accuracy. However,
the need to collect fingerprints, which is labor-intensive and time-consuming, limits its applicability.
Research on reducing the effort of collecting fingerprints has been done in [12,13] by modeling the
constraints imposed by the physics of wireless propagation or by combining the signal characteristics
with users’ movement.

Another popular technique for indoor localization is PDR (Pedestrian Dead Reckoning). Nowadays
most smartphones integrate varying types of sensors such as accelerometer, magnetometer, gyroscope,
and even barometer, making it possible for us to use these sensors to locate and track a person with
a smartphone. Given the initial location, PDR can give the step stride length and heading of a user,
which can be used to calculate his or her real-time location [14,15]. This is especially useful for locating
and navigating in the blind areas of wireless signal. However, PDR needs to be calibrated periodically
since its error increases over time. This can be directly done by the result of GPS [16] in outdoor
environments and indirectly by the received signal strength of Wi-Fi [17], structures of buildings [18,19]
in indoor environments.

Although a lot of research has been done in this field, some critical issues still need to be explored
to enhance the accuracy and applicability. Most existing indoor localization solutions rely on Wi-Fi
infrastructure, which are inapplicable in environments without Wi-Fi coverage or where no enough Wi-Fi
access points (APs) are available. Although Wi-Fi infrastructure is becoming widespread, it still true that
there are many areas without Wi-Fi covered because of cost and safety related concerns. Also, Wi-Fi
is regarded as an energy-hungry technology, which would reduce the life of a smartphone’s battery.
In addition, existing research work focuses mainly on either utilizing the constraint of a floor plan or
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landmarks to enhance the location accuracy. In principle, the floor plan and landmarks can complement
each other. While the floor plan gives coarse information, i.e., the boundary between rooms, it does not
provide information about the interior structures within a room. Landmarks can reflect indoor constraints
imposed by obstacles. We believe that using both the floor plan and landmarks can significantly improve
location accuracy.

To take advantage of the characteristics of complex indoor space and eliminate the reliance on Wi-Fi
infrastructure, we develop an indoor localization solution called APFiLoc, which uses an augmented
particle filter to integrate readings of inertial sensors, map information, and landmarks. The key idea
behind this study is to use both map information and landmarks to eliminate invalid particles, i.e., those
passing through walls or other barriers, and to amend the accumulated error of PDR, so as to improve
the location accuracy. In summary, our main contributions are as follows:

• We propose APFiLoc—a low cost, smartphone-based framework for indoor localization. APFiLoc
has no need for Wi-Fi infrastructure and is accomplished using an augmented particle filter. It fuses
not only PDR and map information, but also landmarks. Such a fusion makes it possible to adapt
the step stride length of different users and to be independent of smartphones’ attitudes. Different
from most existing projects, which only consider single-floor environments, APFiLoc can work in
complex environments including multiple floors.

• We propose a clustering method depending on distance constraints, which can generate magnetic
landmarks and directional landmarks in an unsupervised way (see Section 5 for details). Compared
to traditional K-means clustering, our method does not need the knowledge of the number of initial
clusters and can iteratively produce clusters needed under the constraint.

• We evaluate the influences of landmarks and map information on its performance by a series of
real-world experiments, which were conducted in a typical office building consisting of multiple
floors. Experimental results show that APFiLoc could achieve 80% accuracy (phone in the hand)
and around 70% accuracy (phone in the pocket) of the error less than 2 m error without the
assistance of Wi-Fi APs.

This study postulates that a floor plan describing experimental areas is available, which we think does
not need extra efforts in many cases since indoor maps are basic information to support location-based
services. The employment of a map enables us to constrain the routes of particles and to obtain the
positions of seed landmarks. It is assumed that the initial deviation between user heading and phone
heading is known. This assumption may not be trivial as it requires the user to do some initial calibration
and if not done correctly will affect future performance.

The rest of this paper is structured as follows: Section 2 reviews research work regarding sensor
fusion. Section 3 presents the architecture of APFiLoc and its three key components. The subsequent
three sections expand on each of these components, beginning with PDR (corresponding to Motion
Estimator in APFiLoc), followed by Landmark Detection and Augmented Particle Filter. Section 7
presents experimental results for evaluating the proposed solution. Finally Section 8 concludes the paper
and provides directions for future work.
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2. Related Work

This paper intersects with a number of past research projects especially those on the indoor
positioning. Here we mainly focus on calibration-free positioning techniques and Bayesian
filtering -based sensor fusion approaches.

2.1. Calibration-Free Positioning

Wi-Fi location fingerprinting is one of the widely-used methods for indoor positioning since it can
make use of existing Wi-Fi access points. However, collecting fingerprints is a labor-intensive and
time-consuming task, which is inapplicable for some applications. EZ [12] is one of the pioneers to
attempt indoor positioning without explicit pre-deployment effort. It assumes that the smartphone can
receive occasionally the GPS signal and report a location fix. These observations together with the
Wi-Fi signal strength received by the smartphone at different (unknown) locations are constrained by
the physics of wireless propagation. Then the user’s location can be determined by modeling these
constraints and using a genetic algorithm to solve them. While EZ reports a median positioning error
between 2 m and 7 m, which are not accurate enough to distinguish various rooms. Moreover, the fact
that Wi-Fi signal is susceptible to obstacles or other signals leads to the constraint on its widespread use.

WILL [13] exploits both RF signal characteristics and user motions to build up a radio floor plan
which is previously generated by site survey. The core idea behind WILL is using user motions to
connect independent radio signature under certain semantics. The position of a user can be obtained
by matching the logical floor plan and the real floor plan. It reports a room-level accuracy, but such
an accuracy cannot meet the demand of indoor applications such as navigation in narrow spaces.
UnLoc [20] makes use of signatures inherent in an indoor environment, the locations of these signatures
are called landmarks which we adopted in the paper. These landmarks are used to calibrate the
accumulated error of PDR, which in turn improve the locations of landmarks. By fusing PDR, urban
sensing and Wi-Fi-based partitioning, UnLoc bypasses the need for war-driving and achieves less than 2
m error. However, it may suffer from inaccurate positioning when two landmarks are far away from each
other. Besides, since magnetic and inertial sensor landmarks in UnLoc are dependent on Wi-Fi partition,
it fails to work in an environment without Wi-Fi coverage. Zee [21] leverages the inertial sensors built in
a smartphone to locate the user while simultaneously collecting Wi-Fi fingerprints. The intuition behind
Zee is collecting training data without any explicit effort and employing the augmented particle filter to
infer location. Yet Zee also relies on the Wi-Fi infrastructure and cannot function normally within areas
that are not covered by Wi-Fi APs.

In APFiLoc, we bypass labor-intensive calibration by utilizing landmarks that are derived from inertial
sensors, user motions and map information. In contrast to past studies, which commonly depended
on Wi-Fi infrastructure, our solution can achieve less than 2 m error in our test scenarios without the
assistance of Wi-Fi. This is attributed to the utilization of both map information and landmarks.
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2.2. Sensor Fusion Based on Bayesian Filters

Bayesian filtering approaches are usually used to integrate multiple sensors or measurements to
achieve higher localization accuracy, mainly including Kalman filters and particle filters. The Kalman
filter was used to fuse Wi-Fi, PDR, and landmarks in [22]. Wi-Fi fingerprinting method was used
to provide initial location and exact location while PDR was utilized to offer relative location.
By combining these two methods, the authors achieved an average localization accuracy of 1 meter
in their testbeds. A hybrid structure that consists of a Kalman filter and a particle filter was developed to
combine PDR and Wi-Fi signal strength measurements [23]. The Kalman filter was utilized to provide
real-time position and infer position when a user is in the areas without Wi-Fi coverage, while the
particle filter was used to correct the drift on the inertial sensors. The typical WLAN-based indoor
positioning systems was extended via using the particle filter to integrate an MEMS accelerometer and
map information [24]. The authors of [25] demonstrated a particle filter-based end-to-end localization
system, which is infrastructure free, phone position independent, and easy to deploy. By using the
proposed personalized step model and heading inference method, they achieved a mean accuracy of
1.5 m for the in-hand case and 2 m for the in-pocket case in a single-floor annular area.

In this paper, we use the particle filter to integrate different kinds of information in order to eliminate
the reliance on Wi-Fi infrastructure. Both landmarks and map constraints are considered in this study.
In general, maps provide room-level information in a building, which are commonly about walls and
corridors, rather than finer information about other indoor obstacles. Compared with maps, landmarks
can to some extent reflect more fine-grained indoor structures such as doors, corners, and spots of metal
equipments, which means that incorporating them can achieve better localization accuracy. Besides, by
adding the stride model parameter and heading into the state vector of the particle filter, our solution can
adapt different users’ stride and be independent of smartphones’ attitudes.

3. Architecture of APFiLoc

We begin with a top level overview of APFiLoc, focusing mainly on three core components:
Motion Estimator, Landmark Detector, and Augmented Particle Filter (APF), as shown in the Figure 1.
Specifically, Motion Estimator uses accelerometer, compass, and gyroscope data to compute user stride
length and heading, which are fed to the augmented particle filter for fusion.

Landmark Detector is responsible for generating landmarks that are used to correct the accumulated
error and adjust Weinberg model parameter. There are two core algorithms in Landmark Detector:
the least square support vector machine (LS-SVM) and the clustering algorithm based on distance
constraints. LS-SVM is used to classify seed landmarks and a clustering method is developed for
recognizing organic landmarks, which will be elaborated in Section 5.

In order to enable APFiLoc to adapt to different users’ step characteristics and to be independent
of smartphones’ attitudes , the particle filter is extended by adding Weinberg model parameter and
heading to the state vector, which we call APF. The key function of the APF is to integrate outputs
from above two components and floor map. With such information, the APF can estimate real-time
positions and heading, and adjust Weinberg model parameter, which in turn can refine the positions of
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organic landmarks. The positions of organic landmarks may not be precise at the beginning, but they can
constantly converge over time. The details about the APF will be further discussed in Section 6.

Motion Estimator

Magnetometer Outputs

Compass Outputs

Accelerometer Outputs

Gyroscope Outputs

Landmark 

Detector

Floor Map
Augmented Particle 

Filter

· Position (x,y)

· Weinberg Model 

Parameter

· Heading

APFiLoc

Figure 1. Architecture of APFiLoc.

4. Motion Estimation

Usually, using the repetitive and periodical characteristics of users’ walking can obtain relatively
accurate stride length estimation [21], but we find that the stride length varies from person to person. To
tackle this problem, the APF is utilized to adaptively adjust the parameter of stride length model. Another
issue of PDR is heading deviation. We consider two common poses of a user carrying his or her phone in
this paper: putting in the pocket and holding in the hand. When the user holds his phone in the hand, his
walking direction is considered to be consistent with the Y-axis of the smartphone. In this case, we use
Kalman filter to fuse compass readings and gyroscope readings to eliminate the effect of ferromagnetic
materials on compass readings and the drift of the gyroscope. If users put their phone in the pocket, the
heading inference method presented in [25] is adopted. Next, we elaborate the algorithms involved in the
Motion Estimator, including step detection based on repetition characteristics, stride length calculation
and heading estimation.

4.1. Step Detection

The smartphone we used in the study includes a 3-axis accelerometer at 16 HZ with x and y axis
being parallel to the width and length of the smartphone’s screen respectively. To enable the step
detection method not to be influenced by the smartphone’s orientation, we only utilize the magnitude
of the acceleration:

at =
√
axt

2 + ayt
2 + azt

2 (1)

where axt , ayt , azt are the accelerometer readings along the X-axis, Y -axis and Z-axis at time t,
respectively. A simple high pass filter and a low pass filter [26] are applied to the magnitude of the
acceleration to remove the Earth’s gravity and the noise of the signal, respectively. Traditional step
detection methods, including peak detection and zero crossings [27], need to adjust the parameter
according to the smartphone’s placement, orientation, and walking characteristics of the user, which
may result in large error in practice [26]. In order to enable the step detection algorithm be independent
of the smartphone’s placement, i.e., whether the user is carrying the smartphone in the pocket, hand, etc.,
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we utilize repetitive nature of walks to judge whether a step event happens, more details about this are
available in [21].

4.2. Stride Length Calculation

In general, stride length varies from person to person due mainly to different walking characteristics.
This makes it difficult to use the same model parameters to precisely estimate users’ stride length.
Although there are Weinberg model, Kim model and step counting methods available to compute the
stride length, we have to adjust the model parameter to adapt various users’ walking characteristics.
Therefore, we design a self-adaptive stride length model to tackle this problem. The Weinberg model
parameter is added to the state vector of APF, and there is no need to manually modify the parameter
to obtain accurate stride length for different users. Such an improvement makes it possible to take full
advantage of landmarks and map information to update the parameter of stride length model. The basic
Weinberg model [28] is described below:

sk = α · 4
√
amax − amin (2)

where α is a constant and amax, amin are the maximum acceleration and the minimum acceleration for
each step, respectively. Our approach takes α as the initial value and then iteratively adjusts it in the light
of map information and landmarks that are encountered by the user.

4.3. Heading Estimation

The smartphone’s compass can provide the angle of its orientation relative to the perceived north.
When the smartphone is put in the pocket, the method in [25] is adopted to infer the user’s walking
direction. If the user holds the phone in the hand, we utilize the Kalman filter to fuze both compass
data and gyroscope data. The combination of the compass and gyroscope can not only make up their
respective limitation but also improve the accuracy of heading computation. This combination allows us
to obtain a more accurate heading estimation since it eliminates the effect of metals on compass readings
and the drift of the gyroscope [29]. The key processes are summarized as follows.

Prediction:
θ−k = θ−k−1 − θ̇k ·∆T (3)

P−k = Pk−1 +Q (4)

Update:
θk = θ−k +Kk · (θ

′

k − θ−k ) (5)

K−k = P−k /(P
−
k +R) (6)

Pk = (I −Kk) · P−k (7)

where θ̇k and θk indicate the gyroscope reading and heading computed at the kth step, respectively. ∆T

is the sampling interval of the gyroscope, θ′k is the angle from the compass. Q and R are the covariance
of process and measurement noise, respectively. Kk represents the Kalman gain and Pk is the error
covariance matrix.
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5. Landmark Detection

This section presents the details of detecting landmarks. There are two kinds of landmarks in this
paper: seed landmarks and organic landmarks, similar to those in [20]. Both seed landmarks and organic
landmarks are location points in the environments where users are forced to behave in a distinct motion
state or some types of sensor readings present a predictable and distinguishable pattern. The locations
of seed landmarks (e.g., stairs, elevators, doors) are known or can be inferred from the building’s floor
plan; while the locations of organic landmarks are initially unknown and will be inferred from users’
trajectories in a crowd-sourcing way. We design a clustering method based on distance constraints
to learn organic landmarks in an unsupervised way, while we use the least square support vector
machine (LS-SVM) to classify seed landmarks, which has been proven as the more effective supervised
classification method [30] compared to Decision Tree, Bayesian Network using the Gaussian Mixture
Model, Linear Discriminant Analysis.

5.1. Seed Landmarks

Since each kind of seed landmarks forces the user to behave in a distinct motion state, we can
distinguish the type of seed landmarks according to users’ motion state. We define 6 motion patterns
as shown in Table 1. The former two states (M1, M2) correspond to elevator seed landmarks, while
M3 and M4 are relative to stair seed landmarks. The remaining two states (M5, M6) can help us set
proper parameters to differentiate the former four states. When we recognize a user being in M1, we can
immediately know his position by matching his state with these states that are related to seed landmarks.

Table 1. Motion state definition.

Motion State Definition

M1 Going up elevators
M2 Going down elevators
M3 Going up stairs
M4 Going down stairs
M5 Walking
M6 Stationary

We adopt LS-SVM depended on RBF (radial basis function) kernel function [31] to classify the
6 states defined in Table 1. LS-SVM is a semi-supervised classification algorithm relied on kernel
functions and has a relatively high recognition rate. Compared to general SVM, LS-SVM introduces a
least square loss function and works with equalities to address linear systems rather than solving convex
optimization problems. Here we provide a brief introduction of LS-SVM, and further details regarding
LS-SVM can be found in [30].

The classification problem using LS-SVM is equal to solve the following optimization problem:

minw,e,bJ (w, b, e) =
1

2
wTw +

1

2
γ

N∑
i=1

e2i (8)
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subject to:
yi
(
wTϕ(xi) + b

)
≥ 1− ei, i = 1, . . . , N (9)

where J is the least squares loss function, w is the weight vector, γ is a positive regularization parameter,
e is a vector of error variables, ϕ(·) is a mapping function, and b is a bias term. The corresponding
Lagrangian function for this problem is:

L (w, b, e;α) = J (w, b, e)−
N∑
i=1

ai
(
yi[w

Tϕ(xi) + b]− 1 + ei
)

(10)

where α is a vector of Lagrange multipliers (or support values). By taking the conditions for optimality,
we can finally obtain the LS-SVM classifier:

y(x) = sign

(
N∑
i=1

αiyiK(x, xi) + b

)
(11)

where K is a positive definite kernel matrix. By transforming the original data into a higher dimensional
feature space, different motion states can be classified.

5.2. Organic Landmarks

In order to recognize these organic landmarks without any explicit user effort, we adopt the idea of
crowdsourcing that sensor readings of the smartphone are uploaded simultaneously when the user is
moving. After pre-processing to these readings, features are extracted from sensor readings and then
transferred together with corresponding positions from the APF into the clustering method we designed.

There are two types of organic landmarks in this paper: magnetic landmarks and directional
landmarks. The former refers to those points where the magnetometer presents an outlier due to the
effect of ferromagnetic materials. We define the location point where the average value of a window
of magnetometer readings exceeds a threshold as a potential magnetic landmark. When detecting a
potential magnetic landmark, we record the magnetometer readings and corresponding position from
PDR at this point. The directional landmarks are detected by using both compass readings and gyroscope
readings. Only when both the variation in compass readings over two neighboring moving windows and
that in gyroscope readings over a moving window exceed an angle threshold and an angular threshold,
respectively, we think this location point is a potential directional landmark and record the sensor
readings and corresponding position at this point.

To learn these organic landmarks in an unsupervised way, we design a clustering algorithm depended
on distance constraint. Traditional clustering methods [32] need the knowledge of the number of clusters,
which is impractical in some cases where the number can not be determined in advance. In this paper,
we attempt to replace this constraint with the distance constraint. The clustering algorithm is described
in the following.

Let Y = {y1, y2, · · · , yn} represent unlabeled data (which are potential organic landmarks) to
be classified, the corresponding distance constraint is d(yi, yj) < r which indicates that only when
the distance between two points is less than r , they can be clustered into the same cluster. Let
C1, C2, · · · , Ck indicate different clusters and we have no knowledge of the number of clusters. The
pseudocode (Algorithm 1) describes the clustering algorithm.
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Algorithm 1 Organic Landmark Clustering.
Input: a series of location points with the feature d1 or d1 exceeding the pre-set thresholds
Output: a set of organic landmarks C

1: Initialization: C1 ← {y1}, k ← 1

2: for i = 2 to n do
3: j ← min d (yi, center(Cm))

4: if d (yi, center(Cj)) < r then
5: put yi into Cj ,then update the center of Cj
6: if ∀y′(y′ ∈ Cj), d(y′, center(Cj)) > r then
7: put yi into a new cluster Ck=k+1

8: end if
9: else

10: put yi into a new cluster Ck=k+1

11: end if
12: end for
13: Adjustment:
14: repeat:
15: for i=1 to k do
16: for j = i+1 to k do
17: if d(center(Ci), center(Cj)) < 2r then
18: if ∃ẏ ∈ Cj, d(ẏ, center(Ci)) < d(ẏ, center(Cj)) then
19: delete ẏ from Cj) and update the centers of Ci, Cj
20: end if
21: end if
22: end for
23: end for
24: if isEmpty(Ci), i=1 to k then
25: delete Ci
26: end if
27: until all samples are clustered into the clusters nearest to them

There are two core operations in the algorithm: Firstly, all the unlabeled data are classified into the
cluster nearest to their positions under the distance constraint or into a new cluster when the constraint
is not met. Then for all the clusters, iteratively adjust those elements which are closer to the center of
the other clusters than they are to their own center and recalculate all the centers. After this, repeat
the previous steps until all the data are distributed in a way that every data point in any given cluster
is closer to its own center than it is to the center of any other cluster. To obtain the precise positions
of organic landmarks, APFiLoc adopts the backtracking technique [33]. Every particle remembers
its state trajectory, which is used to refine locations of organic landmarks. This can in turn improve
subsequent location accuracy. Since the error computed by the APF is random, the location estimation
of organic landmarks can converge with more trajectories available. To avoid the influence of fake
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organic landmarks, i.e., when a user changes his heading on a straight corridor, we only consider those
clusters whose quantity of elements is greater than a threshold as organic landmarks.

6. Augmented Particle Filter

In this section, we elaborate the APF used to fuse motion estimation, landmarks, and map information.
The backtracking technique [33] is utilized in the APF to refine locations of organic landmarks, which
can in turn improve subsequent location accuracy. When the particle xik at the kth step crosses walls or
other obstacles, the previous state estimates back to xik−m can be improved via eliminating the invalid
particle trajectories. Meanwhile, we extend the state vector of the APF by adding the parameter of
Weinberg model and heading. The purpose of this is to adapt various step characteristics and to enable
APFiLoc to be independent of smartphones’ attitudes.

To develop the details of the algorithm, let Xi = (xi yi αi θi)
T , i = 1, 2, · · · , N denote the state

vector, where (x, y) is the coordinate and α is the parameter of Weinberg model. θi is the heading, which
can be initially computed by using the method in [25]. The measurement model and state model can be
written as:

Measurement model: Zk =
(
ak θ

′

k θ̇k

)
,where ak is the acceleration at the kth step, θ′k is the

angle measured by the compass and θ̇k is the angular velocity measured by the gyroscope.
State model: xik = xik−1 + sik−1 · sin (θik + γi), yik = yik−1 + sik−1 · cos (θik + γi), where sik−1 is

the stride length computed by the Weinberg model with the parameter αi, αi ∼ N (α0, σ
2
α). σα is the

standard deviation of the Weinberg model parameter and γi is a zero-mean Gaussian noise. θik is the
output of the heading inference method in [25] (phone in the pocket) or the output of the Kalman filter
(phone in the hand). The key steps of the APF are presented below.

(1) Initialization. DrawN samples xi0 (i = 1, 2, · · · , N) according to the initial posterior probability
density function and assign the initial weight for each particle using wi0 = 1/N .

(2) Prediction. Compute the state xik at the kth step for each particle based on the state model.
(3) Weight calculation. In general, there are two scenarios that we need to recalculate the weight.

First, the weight of a particle will be assigned to zero when it crosses walls or obstacles. The second
is that when encountering a landmark, the weights of particles will be recalculated according to the
distances from this landmark. The nearer a particle to this landmark, the greater its weight. The basic
equation for using landmarks to recalculate weights is defined as:

wik =


0, if crossing a wall or obstacle

wik−1 · 1√
2πσ

e−

∥∥∥∥∥Xzk−Xz′
k

∥∥∥∥∥
2

2σ2 , if encountering a landmark
(12)

where Xzk is the coordinate of the landmark. Xz
′
k

is the estimated coordinate using new measurements
and σ is the corresponding standard deviation. After this, the weights need to be normalized by using
the equation below.

ẇik = wik/
N∑
j=1

wjk (13)



Sensors 2015, 15 27262

(4) State estimate. The state can be obtained via the following equation.

X
′

k =
N∑
i=1

ẇik · x
i
k (14)

(5) Resampling. The basic idea of resampling is to replace particles of small weights with those of
large weights. It involves producing a new set of particle when the degeneracy problem arises, while αi
is not updated at this stage.

(6) Backtracking. Each particle has to remember its trajectory in the localization process. When
a particle xik is detected being invalid at the kth step, its previous state estimates back to xik−m can be
refined, thereby improving the locations of organic landmarks.

7. Evaluation

The proposed APFiLoc solution was evaluated by a series of experiments conducted in an office
building, occupied by the China National Engineering Research Center for Geographic Information
System. Figure 2 shows the experimental scenarios, in which the ground truth paths are marked in
solid lines (horizontal motions) and dotted lines (vertical motions). This office building consists of four
floors with an area of 3300 square meters for each floor, which is a typical office environment, including
an elevator, staircases, corridors, office rooms and electronic equipment. The length of pre-set test path
is about 290 m, going through 3 floors of this building selected.

Figure 2. Ground truth paths in experiments.
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The device we used is the Samsung Galaxy S III phone equipped with accelerometer, magnetometer,
gyroscope, and barometer. Two testers of different heights were asked to walk along this pre-set paths
for 10 times with the phone in the hand and in the pocket, respectively. During the experiments, the
testers were required to report the pre-set markers they encountered to evaluate the location accuracy.
The detailed location accuracy evaluation method will be further discussed in Section 7.2.

7.1. Classification and Recognition of Landmarks

7.1.1. Seed Landmarks

To classify and recognize seed landmarks, we use the accelerometer readings ax, ay, az and the
barometer reading b to deduce features, including the total acceleration a, horizontal acceleration
ah, vertical acceleration av, the variation of the barometer reading db and their respective mean and
covariance. These features are extracted over a moving window, which are then fed to the LS-SVM. If
a user is detected in a motion pattern related to seed landmarks, e.g., upstairs or downstairs, we would
compare the location estimated from PDR and seed landmarks’ locations derived from the map, and
select the location of the nearest seed landmark to calibrate the estimated location.

Figure 3a,b indicate that the acceleration varies from state to state and it is easy to distinguish stairs
and walking, elevators and stationary. However, we observe that it is difficult to tell the difference
between M1 and M2 (or M3 and M4) simply through the acceleration. The emergence of the barometer
that has been built in many smartphones provides us with the opportunity to address this question.
Figure 4a,b give the changes on the barometer when the user is moving from one floor to another
by stairs and elevators, respectively. The barometer reading is affected by weather, temperature and
humidity, which means that this reading cannot be used to judge on an absolute scale which floor a user
is lying. However, the variation between two floors in a building is constant, which stays at about 0.5 hPa
for our test building. This relative variation is reliable to distinguish different floors.

(a) Walking, Stairs (b) Stationary, Elevators

Figure 3. Acceleration of different state.
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(a) Going down or up stairs (b) Going down or up elevators

Figure 4. The change on the barometer when a user is moving from one floor to another.

The 5-fold cross validation [34] was used to assess the performance of LS-SVM adopted by APFiLoc.
Experimental data was collected by a Samsung Galaxy S III smartphone. After pre-processing these
data, the feature values are computed over a moving window. There are 1379 samples in total. These
samples are randomly partitioned into 5 equal size subsamples. The cross validation process is repeated
5 times, with each of 5 subsamples used once as the validation data for testing the model while the
remaining 4 subsamples as training data. The estimate can be obtained by averaging the 5 results from the
folds. We adopt the toolbox LS-SVMlab [35] to analyze the performance of LS-SVM. By experimental
analysis, we finally select {µa, σ2

a, µav , db}, namely mean and variance of the total acceleration, mean of
vertical acceleration, difference in the barometer readings, as the features for classification, achieving a
recognition rate of 97.5%, which is good enough for detecting seed landmarks.

7.1.2. Organic Landmarks

In Section 5.2, we introduced magnetic landmarks and directional landmarks. The threshold for
magnetic landmarks is set to 65 uT while the thresholds for directional landmarks are set to 30◦ (for
compass readings) and 0.5 rad/s (for gyroscope readings). The 10 collected traces are divided into two
groups. Each group includes 5 traces, as shown in Figure 5a,b, in which the blue dotted line indicates the
ground truth while the red lines are trajectories estimated. Figure 5a shows that the trajectories of first
5 round-trip traces, while Figure 5b illustrates trajectories for the second 5 round trip traces. Initially,
there is no knowledge of organic landmarks, thereby the trajectories estimated deviate significantly from
the ground truth. The subsequent trajectories are computed using the knowledge of organic landmarks
discovered by former traces. Therefore, the deviation between the ground truth and trajectories estimated
reduces with more traces available. The results shown in Figure 5b outperform those in Figure 5a.

Figure 6 gives the information about organic landmarks’ actual locations, locations estimated from
5 traces and that from 10 traces. Overall, the locations estimated from 10 traces are closer to actual
locations than that from 5 traces. After 10 traces, all the organic landmarks, including magnetic
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landmarks and directional landmarks, are recognized by the proposed algorithm without the knowledge
of the number of clusters.
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(b) The second 5 round-trip trajectories

Figure 5. The trajectories in the fourth floor.
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Figure 6. Organic landmarks recognized by the proposed clustering algorithm.

We also found out that magnetic landmarks are sensitive to the threshold. To eliminate the false
magnetic landmarks, the threshold is set to 65 uT after experimental analysis. Besides, there are lots of
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factors that influence the detection of magnetic landmarks. In most cases, magnetic landmarks can be
detected only if the device is close to ferromagnetic materials (usually less than 50 cm). For directional
landmarks, the detection error often arises from users’ arbitrary turning. For instance, the user turns
around at the corridor where there are actually no turns or corners. To tackle such error, we only use the
potential organic landmarks that are encountered by the user for more than 5 times to compute the exact
location of an organic landmark.

7.2. Localization Results

In this section, we assess the localization accuracy of APFiLoc and analyze the effect of landmarks
and map information on the performance. The number of particles for APFiLoc N is set to 1000.
The initial value and standard deviation of Weinberg model parameter α are set to 0.66 and 0.07,
respectively. APFiLoc interacts with the user to obtain the initial location. To precisely assess the
location accuracy, we used the interpolation method to obtain the actual locations between two makers
according to sampling interval and timestamps, as shown in Figure 7. The distance between two markers
was 2 meter in this study. After computing the localization error at each location point, the overall error
can be calculated using the following formula:

e =
N∑
i=1

ei =
N∑
i=1

∥∥∥L(pi)− L(p
′

i)
∥∥∥ (15)

where L(pi) is the location of the ith marker (including the virtual markers generated by interpolating),
and L(p

′
i) is the estimated location corresponding to the ith marker.
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Figure 7. The accuracy evaluation method.

We compare the performance of APFiLoc with PDR + Landmarks and Particle Filter + Map
Information + PDR solutions. Figures 8 and 9 illustrate the localization results of different solutions
in the case of the phone in the hand and that in the pocket, respectively. It shows that in our test
environment, APFiLoc outperforms other two solutions in both cases. Specifically, in the case of the
phone in the hand, APFiLoc (red line with plus sign) can achieve 80% accuracy with the error less than
2 m compared to 68% (blue line with triangle sign) for PF + Map + PDR and 60% (green line with dot
sign) for PF + Landmarks. The figure for the solution PF + Map + PDR is slightly less than that for PDR
+ Landmarks until it reaches 82% with the error less than 4 m, when the figures for both solutions are
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equal and after that the accuracy for PF + Map + PDR is higher than that for PDR + Landmarks. When
the phone is put in the pocket, the overall accuracy for each solution decreases by 12% since the heading
estimation is less accurate compared to the case that the phone is in the hand. In the case, APFiLoc still
performs best in terms of accuracy, followed by PF + Map + PDR and then by PDR + Landmarks.
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Figure 8. Performance comparison of different methods (Phone in the hand).
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Figure 9. Performance comparison of different methods (Phone in the pocket).

From the Figures 8 and 9, we can also see that both map information and landmarks are useful in
improving localization accuracy. Map information can enhance the accuracy by imposing constraint
on the possible paths and eliminating invalid particles. While landmarks contribute to the reduction of
location error, which is especially obvious when users lie in a large room. For the corridor environments,
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landmarks are less useful since they are naturally included in the map information. However, most
maps only have the coarse information, which is typically boundaries of rooms. For a larger office
room (e.g., the area is more than 100 square meters), only map information is not enough to provide a
good localization result. In this case, landmarks, which can reflect the interior structures of a room, are
necessary for improving localization accuracy. Overall, map information and landmarks can complement
each other, and combining both can accomplish a better localization result.

The accuracy increases with more landmarks being recognized until all landmarks are successfully
detected and recognized. Take the case that the phone was held in the hand as an example, the accuracy
change of different localization methods over time was shown in Figure 10. The data for Figure 10 is
the accumulated distances or steps conducted by one participant moving along the pre-set experimental
paths for 5 times. To be visually clear, we only show positioning results with an interval of 20 steps.
From the Figure 10, we can see that the overall errors of APFiLoc and PDR + Landmarks are decreasing
with time. This is because the number of organic landmarks increases over time until all the organic
landmarks in the space of interest are recognized. Initially, the errors of APFiLoc and PDR + Landmarks
are large due mainly to lack of enough landmarks or the locations of organic landmarks are inaccurate.
With more traces available, the locations of organic landmarks are refined and more organic landmarks
are discovered, leading to an increase in the accuracy of both APFiLoc and PDR + Landmarks. Also,
landmarks have less influence on the performance of APFiLoc than that on the PDR+Landmarks method
since APFiLoc makes use of not only landmarks, but also map information. However, the performance
of PF + Map + PDR method generally stays stable over time since it does not use the landmarks to refine
the result.
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Figure 10. The errors of different methods over the distance moved.
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8. Conclusions and Future Work

This paper presents an indoor positioning solution called APFiLoc that uses the APF to fuse readings
of smartphone inertial sensors, map constraint, and landmarks. The LS-SVM is used to classify seed
landmarks and a clustering algorithm relying on distance constraint is developed to recognize organic
landmarks. This algorithm does not need the knowledge of the number of clusters. Our solution
bypasses the troublesome effort for fingerprint collection and can achieve 80% accuracy (phone in
the hand) and around 70% accuracy (phone in the pocket) of the error less than 2 m without Wi-Fi
infrastructure requirement.

In contrast to prior studies about indoor positioning, which focus commonly on building a precise
wireless signal propagation model or reducing the workload of collecting Wi-Fi fingerprints, our
APFiLoc does not depend on Wi-Fi APs. This means that APFiLoc is suitable to cases in which it is
impossible or impractical to install large amounts of fixed infrastructure into the environment in advance.
This is because of the utilization of map information and landmarks. The map information allows
APFiLoc to eliminate invalid particles, thereby improving the accuracy of positioning. Meanwhile,
when a user passes through a landmark, his position can be calibrated and the parameter of Weinberg
model is updated at the same time.

Despite the fact that our work can provide a relatively high accuracy, it requires the knowledge of
maps. Therefore, in the future, we will use the crowdsourcing method to generate the spatial model
for indoor localization that contains not only environmental constraints represented by a map, but also
landmarks and so on. Besides, multiple neighbouring landmarks will be utilized in the phase of landmark
matching, which would further reduce the location error. Another challenge that still waits to be solved
is how to obtain accurate heading estimation, which is independent of different complex phone poses
(e.g., phone in the bag, users swing the phone when moving) and motion states.
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