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a b s t r a c t

Map matching is a commonly-used technique that employs spatial constraints to improve positioning
results. While map matching can improve the positioning performance to a large extent, existing map
matching methods consider only adjacent transitions between reference points (RPs). This makes these
map matching methods depend highly on the sampling size of RPs. To reduce the influence of the
RPs’ sampling size, a novel map matching method called PDMatching is proposed in this paper, which
considers both adjacent and non-adjacent transitions. These transitions are described based on the path
distance of the RP sequence obtained by the shortest path algorithm. Compared to the commonly-used
Euclidean distance, the path distance is more suitable for map matching as it takes into account spatial
constraints. It allows to estimate the transition distance more accurately, which can further improve
the positioning accuracy. To infer the location of a user, the student’s t-distribution is used to transform
the path distance into a transition probability, from which the location can be obtained via the Viterbi
algorithm. Extensive experiments have been conducted to evaluate the proposed PDMatching in a
large museum environment. Experimental results show that the proposed PDMatching can achieve a
mean localization error of 3.4m and 4.6m for uniform and varying speed modes, respectively, which
outperforms the state-of-the-art methods (e.g., MapCraft, VTrack, XINS). Moreover, the PDMatching is
more robust to the sampling size of RPs than other methods.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction1

Indoor positioning method plays an important role in var-2

ious location-based services (LBS) [1,2]. Wi-Fi fingerprinting is3

one of the most popular indoor positioning methods because4

of the ubiquitous availability of Wi-Fi infrastructure. It includes5

an offline training phase and an online localization phase. In6

the training phase, fingerprints are collected at a grid of known7

locations (referred as reference points) and stored in a fingerprint8

database (also known as radio map). A fingerprint can be a vector9

of received signal strength indicator (RSSI) [3,4] or channel station10

information (CSI) [5] from visible access points (APs). CSI-based11

methods can usually achieve better accuracy than RSSI-based12

methods, but they have poorer coverage [6]. In the localization13

phase, the newly-collected fingerprint is compared with those14

stored in the fingerprint database, and then the corresponding15

location can be computed via certain methods such as K-nearest16

neighbors (KNN). The accuracy of Wi-Fi positioning is affected by17

the layout of indoor environments, human movement, and other18

∗ Corresponding author.
E-mail address: fuqiang.gu@mail.utoronto.ca (F. Gu).

obstacles that may cause signal multipath, shading, and reflec- 19

tion [7,8]. To improve the localization accuracy, one can combine 20

different localization signals or technologies (e.g., inertial sensors, 21

Wi-Fi, Bluetooth) [9]. However, these signals or technologies may 22

not be always available in the environment. On the other hand, 23

spatial context [10], such as landmarks and floor plans, can be 24

used to improve the accuracy of Wi-Fi fingerprinting without 25

requiring additional hardware. 26

Landmarks are defined as specific location points with certain 27

unique patterns identifiable from the smartphone sensor read- 28

ings. The positioning accuracy can be improved by integrating 29

landmarks [11–14]. For instance, an improvement of more than 30

35% localization accuracy over Wi-Fi fingerprinting is witnessed 31

in [11] when combining landmarks. However, landmark-based 32

methods rely highly on the accuracy of landmark detection. An 33

omission or commission error of landmark detection will lead 34

to a large positioning error [10]. Apart from landmarks, spa- 35

tial constraints imposed by walls and other obstacles can also 36

be used to improve the positioning accuracy, which is usually 37

done through a particle filter [15–19]. The particle filter-based 38

methods estimate locations with the statistical results of all the 39

particles, of which the coordinates are inferred from the last 40

https://doi.org/10.1016/j.future.2020.01.053
0167-739X/© 2020 Elsevier B.V. All rights reserved.
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location. The particles propagate forward based on a system/state1

model and their associated weights are corrected by using the2

spatial constraints. However, particle filtering requires a large3

number of particles to maintain a satisfactory accuracy, which is4

computationally expensive for resource-limited mobile platforms5

such as smartphones. Moreover, the inference of particle filtering6

methods uses only the last location and current sensor readings7

to estimate the current location rather than the whole previous8

information. This may result in a locally optimal result, leading to9

a large positioning error.10

To obtain a globally optimal estimation, map matching-based11

positioning methods are often used, which can make use of a12

sequence of observations and the previous location estimates to13

infer the current location. Commonly-used map matching meth-14

ods are usually based on a hidden Markov model (HMM) [20–22]15

or conditional random field (CRF) [23,24], which can improve16

the positioning accuracy. For example, the accuracy (measured17

by mean error) achieved by the method in [22] that uses a18

heading-based HMM doubles the accuracy achieved by the com-19

mon weighted KNN method. However, these matching methods20

consider only adjacent transitions and set their transition proba-21

bility manually. The problem of allowing adjacent transitions only22

is that it may lead to a large localization error when the RPs are23

too dense. For example, if the distance between two neighboring24

RPs is 0.3 m and a user’s step length is 0.6 m, then the matching25

methods considering only adjacent transitions will lead to a large26

matching error. The problem of manually setting the transition27

probability is that it ignores the location distance between two28

RPs in indoor spaces. As the transition probability describes the29

movement between the RPs, the probability of a large location30

distance should be smaller than that of small location distance,31

since people may not be possible to move to a location that is32

far away from the previous location during a short period of time33

(e.g., 1 s).34

In this paper, a novel HMM-based map matching method35

called PDMatching is proposed, which is robust to the sampling36

size of RPs. In the PDMatching method, the transition proba-37

bility matrix is constructed by considering both adjacent and38

non-adjacent RPs, rather than only adjacent RPs that are com-39

monly used in conventional HMM-based matching methods. As40

the proposed method allows non-adjacent transitions, the user’s41

location could be mapped to a non-adjacent RP that is closer to42

the true location than adjacent RPs. This will result in a more43

accurate matching than conventional methods that use adjacent44

transitions only. The transition probability is calculated based on45

the shortest path distance obtained by the Dijkstra, rather than46

on the Euclidean distance. Compared to the Euclidean distance,47

which simply computes the distance between two points without48

considering spatial constraints (e.g., walls), the path distance49

can consider spatial constraints, which allows to express the50

transitions between RPs more accurately. Then, the student’s51

t-distribution is taken to transform the path distance into cor-52

responding probability as the student’s t-distribution does not53

require to configure parameters. After that, the locations are in-54

ferred by finding the most likely sequence of RPs with the Viterbi55

algorithm [25] and inserting the possible RPs into the sequence56

to avoid the inferred path crossing walls. Although there are57

certain algorithms extended from the original Viterbi can be used58

to accelerate the matching process, the focus of this study is to59

investigate the usefulness of path distance and matching with60

considering both adjacent and non-adjacent transitions. As the61

size of RPs in this study is not very large, the classical Viterbi62

algorithm is adopted for simplicity and the experimental results63

show its efficiency on the task.64

Overall, our contributions are listed as follows:65

1. A novel HMM-based map matching method called 66

PDMatching is proposed, which is insensitive to the sam- 67

pling size of RPs. The transition probability matrix of 68

PDMatching is calculated based on both adjacent and non- 69

adjacent RPs. This makes the proposed method robust to 70

the different density of the RPs as it allows transitions in 71

both short and long ranges. 72

2. The path distance, which is computed by the Dijkstra algo- 73

rithm, is proposed to estimate the transitions between the 74

RPs. Different from the commonly-used Euclidean distance, 75

the path distance considers the spatial information of the 76

indoor environment and leads to a more accurate estima- 77

tion of the transition distance to improve the results of map 78

matching. 79

3. The proposed PDMatching method is evaluated through 80

extensive experiments. Experimental results show that the 81

PDMatching outperforms the state-of-the-art methods and 82

is insensitive to RP sampling sizes, walking speeds, and 83

Wi-Fi scanning frequencies. 84

The rest of the paper is organized as follows. Section 2 intro- 85

duces related works. Section 3 illustrates the proposed PDMatch- 86

ing step by step. In Section 4, the proposed PDMatching is eval- 87

uated by extensive experiments, and this paper is concluded in 88

Section 6. 89

2. Related work 90

In recent years, many indoor positioning methods that use 91

spatial context to improving positioning accuracy have been pro- 92

posed, which are mainly categorized into landmark-based and 93

probabilistic model-based methods. 94

2.1. Landmark-based methods 95

Landmarks are useful in improving indoor positioning accu- 96

racy without requiring additional hardware. In [26], a seamless 97

indoor and outdoor positioning method is proposed by matching 98

locations to the landmarks where certain activities are detected. 99

UnLoc [27] achieves a median location error of about 1.7m in 100

an indoor environment by using seed landmarks (e.g., staircases, 101

elevators, turns) and organic landmarks (locations with particular 102

ambient signatures). SemanticSLAM [11] extends the UnLoc sys- 103

tem by implementing it under a simultaneous localization and 104

mapping (SLAM) framework and obtains a more accurate result. 105

APFiLoc [28] fuses landmarks with inertial sensor readings and 106

map information through a particle filter to enhance the localiza- 107

tion accuracy of the PDR in indoor environments. ALIMC [29] uses 108

a tree model to detect activity landmarks to improve the accuracy 109

of indoor mapping. To make proper placement of landmarks, 110

Magnago et al. [13] proposed a model to measure the positioning 111

uncertainty to minimize the number of landmarks. Besides the 112

inertial sensors and Wi-Fi sensors, visual features from images 113

can be also used to describe landmarks [14]. Visual landmarks 114

require no extra infrastructure and have attracted much attention 115

recently. 116

Landmarks have been used to improve indoor positioning 117

accuracy in many works [12,11,29], since they are naturally or 118

easy-to-deploy in indoor environments and can be identified at a 119

low cost. Unlike sensor fusion methods [9], which require mul- 120

tiple types of sensors, landmark-based positioning methods do 121

not require additional hardware and can also achieve competitive 122

positioning accuracies. However, the performance of landmark- 123

based methods depends highly on the accuracy of landmark 124

detection. A wrong detection of landmarks may lead to a large 125

error of the location estimation [10]. Besides, there are not stan- 126

dard rules to detect landmarks, which makes landmark-based 127

positioning methods less generic in practice. 128
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Fig. 1. System architecture of the PDMatching.

2.2. Probabilistic model-based methods1

Probabilistic model-based methods usually use previous infor-2

mation along with spatial information to restrict locations. Com-3

pared to landmark-based methods, probabilistic model-based4

methods are usually more robust since they make use of a se-5

quence of history information [30]. Common probabilistic model-6

based methods include particle filter, HMM, and CRF. Particle7

filters are usually used to integrate sensor data with spatial8

information (e.g., a floor plan). Zee [15] utilizes a particle filter to9

combine inertial sensor readings, which are used to count steps10

and estimate heading, with Wi-Fi fingerprints and map informa-11

tion to achieve accurate indoor localization. Similarly, XINS [31]12

also uses a particle filter to fuse inertial sensor readings and map13

information with Wi-Fi measurements, GPS (global positioning14

system) or location information transmitted from another device.15

In [32], the particle filter is used to combine inertial sensor data16

and polarized light, and a median positioning error of 4.3m is17

achieved. PFSurvey [33] estimates the location of fingerprints by18

using a particle filter to fuse inertial sensor data with a floor plan19

to reduce the effort of the site survey. In [34], the particle filter is20

used to integrate inertial sensor readings, iBeacon RSSIs, and map21

constraints to improve positioning accuracy as well as to enhance22

user experience in navigation. However, particle filtering-based23

methods are usually computationally expensive and can consume24

the smartphone’s battery quickly.25

To reduce the computational cost, Liao et al. [35] employed26

the particle filter to estimate the locations of a user on a one-27

dimensional Voronoi graph that can significantly reduce the num-28

ber of the particles. Hilsenbeck et al. [36] proposed a graph-based29

and low-complexity indoor positioning method. By simplifying30

the indoor map structure to a linked graph, it significantly re-31

duces the number of particles required for obtaining accurate lo-32

cation estimation from the pedometer and Wi-Fi measurements.33

Nurminen et al. [37] developed a graph-based motion model34

for indoor positioning. Chen et al. [38] presented a graph-based35

method for indoor subarea positioning without requiring config-36

uration. Yu et al. [39] developed a low-cost indoor navigation37

method by combining a Kalman filter and a particle filter in a38

cascade structure to reduce the computational burden. However,39

these methods consider only limited previous information rather40

than the complete estimations in the past, which may not be able41

to obtain the optimal estimation in some cases.42

HMM is another popular probabilistic model that can make43

use of all previous information for the current estimation.44

VTrack [20] uses a HMM to estimate locations and travel time45

from a sequence of GPS and Wi-Fi measurements. Viel et al. [40]46

presented a HMM-based map matching method for reconstruct- 47

ing device trajectories from cellular fingerprints. It considers 48

spatial constraints imposed by roads when computing transi- 49

tion probability and then uses the Viterbi algorithm to generate 50

the trajectories of interest. Ye et al. [41] developed a HMM 51

to combine Wi-Fi RSSIs and accelerometer readings for indoor 52

positioning, in which the transition probability is computed based 53

on the movement distance estimated from the accelerometer 54

readings. Algizawy et al. [42] proposed an adaptive HMM-based 55

method that employs trip antenna coverage zones to learn trajec- 56

tory patterns and infer corresponding roads for a given sequence 57

of the trip antenna. Apart from the HMM, CRF is also often used 58

for map matching. MapCraft [23] uses the CRF to integrate inertial 59

and radio frequency (RF) sensor readings and constraints from 60

a floor plan, landmarks, RF AP locations, and RF fingerprints to 61

achieve robust and accurate indoor tracking. Mapel [43] utilizes 62

the CRF to fuse geomagnetism with the pedometer to estimate 63

the user location. 64

In this paper, the HMM-based map matching method is also 65

used. However, different from existing HMM-based methods [20, 66

40,42], which are used for reconstructing trajectories or outdoor 67

positioning from GPS locations or cellular fingerprints, the HMM 68

in this study is used for indoor positioning based on Wi-Fi fin- 69

gerprints. While the method in [41] is developed for indoor posi- 70

tioning, it uses accelerometer readings to compute the transition 71

probability. By contrast, the proposed method does not require 72

additional hardware to compute the transition probability. In- 73

stead, the proposed method utilizes the path distance between 74

two RPs to compute the transition probability. To increase the ro- 75

bustness of matching, both adjacent transitions and non-adjacent 76

transitions between RPs are considered in the proposed method. 77

Table 1 summarizes typical related works, including spatial 78

context involved, sensor used, key contributions, and limitations. 79

3. Method 80

In this section, the proposed PDMatching is described in detail. 81

Firstly, the system architecture is introduced, which is followed 82

by the problem formulation. Then, the processes of computing 83

transition matrix, emission probability, and inference with a path 84

table are described. 85

3.1. System architecture 86

The architecture of the proposed PDMatching is shown in 87

Fig. 1, which includes an offline phase and an online phase. In 88

the offline stage, the floor plan is divided into grids, of which 89



FUTURE: 5422

Please cite this article as: P. Chen,X. Zheng, F. Guet al., Pathdistance-basedmapmatching forWi-Fi fingerprintingpositioning, FutureGenerationComputer Systems (2020),
https://doi.org/10.1016/j.future.2020.01.053.

4 P. Chen, X. Zheng, F. Gu et al. / Future Generation Computer Systems xxx (xxxx) xxx

Table 1
Recent methods based on landmark and probability model.
Reference Spatial context Sensor Key contribution Limitation

[26] Landmarks GPS + inertial sensors Seamless indoor and outdoor
localization by combining GPS
and PDR

Requirement for the occasional
GPS signals

[27,11] Landmarks Wi-Fi + inertial sensors Unsupervised indoor
localization by combining
landmarks with PDR

Dependence on the landmark
density

[28] Landmarks + Floor plan Inertial sensors Infrastructure-free indoor
localization by using the
particle filter to fuse PDR,
landmarks, and maps

Requirement for accurate
heading estimation

[29] Landmarks Wi-Fi + inertial sensors Accurate indoor mapping via
crowdsourcing

Dependence on landmark
detection accuracy

[14] Landmarks + maps Camera + inertial sensors Resource-efficient localization
by using visual features and
maps

Dependent on image retrieval
accuracy

[15] Floor plan Inertial sensors + Wi-Fi Zero-effort fingerprint
collection via crowdsourcing
by using a particle filter to
integrate inertial sensor data
with a floor plan

High computational cost

[31] Floor plan Inertial sensors + Wi-Fi/GPS Fusing multiple signals with a
floor plan to improve
positioning accuracy

High computational cost

[33] Floor plan Inertial
sensors + geomagnetism

Fast signal map creation by
using SLAM and particle
filtering

High computational cost and
complex preprocessing steps

[39] Floor plan Inertial sensors + Wi-Fi Accurate indoor positioning by
fusing Wi-Fi, inertial sensor
data, and Map via a cascaded
Kalman/particle filter
framework

High computational cost

[40] Road network Cellular Trajectory generation from
cellular fingerprints

Not applicable for indoor
environments

[20] Road network GPS + Wi-Fi Accurate traffic delay
estimation by a HMM

Low accuracy for positioning

[42] Road network GPS + cellular Learning road-level trajectory
patterns from antenna
coverages zones

Not applicable for indoor
positioning

[36] Voronoi graph Inertial sensors + Wi-Fi Efficient indoor positioning
with graph-based sensor fusion

Low performance in open areas

[37] Voronoi graph Wi-Fi Proposing a graph-based
motion model

Assuming a uniform
distribution in the graph’s
detail

[38] Voronoi graph Wi-Fi Subarea indoor positioning
without requiring configuration

Low positioning accuracy

[41] N/A Inertial sensors + Wi-Fi Improving the Wi-Fi
positioning by integrating
fingerprinting with
displacement ranging

Requiring accurate
displacement estimation

[24] Grid graph N/A Trajectory correction with a
CRF

The result is dependent on the
grid size

[23] Floor plan Inertial sensors + Wi-Fi Efficient indoor tracking and
trajectory reconstruction by
using the CRF to fuse inertial
sensor data, Wi-Fi
measurements, and spatial
constraints

Requirement for accurate
estimation of step length and
heading

[43] Map Inertial sensors +geomagnetism A graphical model that fuses
geomagnetic field and
pedometer for calibration-free
indoor positioning

Support adjacent transitions
only

the centers are treated as the RPs. Then, a fingerprint database1

is constructed by the site survey, namely by standing at each2

RP to collect the RSSIs from visible APs. Based on the fingerprint3

database, the shortest distances between any two RPs are calcu-4

lated using the Dijkstra algorithm. These RPs and their shortest5

distances to each other are then used to construct the path6

table and the transition probability matrix. Each row in the path 7

table represents the starting RP, ending RP, and the sequence 8

of connected RPs from the starting RP to the ending RP. In the 9

online stage, the RSSI query from the mobile device is used as 10

the input of the proposed system. The similarities between the 11

RSSI query and these RSSIs stored in the fingerprint database are 12
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measured by the emission probabilities, which are transformed1

by the student’s t-distribution from RSSI distances. Then, the tran-2

sition probability matrix together with the emission probability3

matrix is used to infer the trajectory that best matches with4

observations (Wi-Fi measurements) by the Viterbi algorithm. The5

possible RPs are inserted in the adjacent RPs of the matched6

trajectory by comparing with those stored in the path table.7

Finally, the locations of the RP sequence are used as the output8

of the system.9

3.2. Problem formulation10

Let S = {s1, s2, . . . , sN} be a set of hidden states (namely11

RPs), and O be the set of observations (namely Wi-Fi RSSIs). The12

transition matrix is denoted by A, and its element is represented13

by P(sj|si), which represents the probability of state si transiting14

to state sj. The emission probability P(o|s) is the probability of15

observing o at state s, which is described based on the distances16

of the online RSSI and the fingerprints. To obtain the location by17

map matching, the HMM model selects the most likely sequence18

of the hidden states X = {x1, x2, . . . , xT }, where xi ∈ S. The HMM19

model ensures to maximize the probability of the observations20

O = {o1, o2, . . . , oT } as follows:21

P(O) =

∑
X

P(O|X)P(X)

=

∑
X

πsi

T−1∏
t=1

P(xt+1|xt )P(ot |xt ).
(1)22

where the initial state distribution πsi is defined as 1/N , which23

means the initial location could be at any RP. After obtaining the24

sequence of hidden states X that correspond to given observa-25

tions, the current location of the user can be inferred by looking26

up the path table.27

3.3. Path distance-based transition probabilities28

Due to the existence of obstacles, the path distance is utilized29

to replace the Euclidean distance to measure the transitions be-30

tween RPs. Specifically, the Dijkstra algorithm is used to compute31

the shortest path distances between two RPs with considering32

spatial constraints of the indoor environment. Based on the short-33

est path distances, the transition matrix A is calculated using34

the student’s t-distribution. There are several reasons why the35

student’s t-distribution is used rather than the commonly-used36

normal distribution. First, as shown in Fig. 2, the probability37

of normal distribution drops quickly with the increase of the38

distance. As a result, the probability with a large distance is close39

to 0 and hence limits the transition to a local region. Second,40

the probability of normal distribution depends on the variance,41

which is difficult to estimate in a real scene. If the variance is42

set to a very small value, the probabilities between the RPs are43

nearly the same and could not well describe the transition. On the44

contrary, a large value of the variance will cause most transition45

probabilities being close to 0. Therefore, the long-tailed student’s46

t-distribution with one-degree of freedom is used to compute47

the transition probability. The student’s t-distribution relies only48

on the distance. Fig. 2 visualizes the comparison of the normal49

and student’s t-distributions, the probability of the student’s t-50

distribution is smaller than that of the normal distribution but51

is bigger when the distance is large. The student’s t-distribution52

allows the transition between the RPs with larger distance.53

In practice, since the user may move to any location within a54

small range, the same value is assigned to the probability whose55

path distance is below a distance threshold. Thus, the transition56

Fig. 2. Comparison of normal and student’s t-distributions.

probability between RPs si and sj is defined as the following 57

piecewise function: 58

asi,sj =

{
(1 + δ2)−1, dpath(si, sj) ≤ δ

(1 + dpath
(
si, sj

)2)−1 dpath(si, sj) > δ
(2) 59

where δ is a threshold of path distance. dpath(si, sj) is the path dis- 60

tance between si and sj. To ensure that the sum of the transition 61

probabilities from the same RP equals to 1, the probabilities is 62

transformed as follows: 63

psi,sj =
asi,sj∑
sj∈S

asi,sj
(3) 64

where S is the set of the RPs. Then, by taking each RP as the 65

starting point, the complete transition probability matrix A is 66

constructed as follows: 67

A =

⎡⎢⎢⎣
ps1,s1 ps1,s2 · · · ps1,sN
ps2,s1 ps2,s2 · · · ps2,sN

...
...

. . .
...

psN ,s1 psN ,s2 . . . psN ,sN

⎤⎥⎥⎦ . (4) 68

3.4. Emission probabilities 69

The emission probability describes the probability of an ob- 70

servation ot being generated from a state si. The student’s t- 71

distribution is also used to transform the Euclidean distance 72

between the online RSSI and fingerprints as the emission prob- 73

ability, which is expressed as follows: 74

p(ot |si) = (1 + ∥rssio(t) − rssisi∥
2)−1 (5) 75

where rssio(t) is the online RSSI treated as the observation at 76

time t . rssisi is the RSSI fingerprint at the RP si. As the rssisi is 77

collected offline, the value is fixed in the map matching process. 78

For simplicity, bt (si) is used to replace p(ot |si). 79

3.5. Map matching 80

After calculating the transition and emission probabilities, the 81

location result is inferred via the Viterbi algorithm [25]. The 82

Viterbi algorithm is a typical dynamic programming method aim- 83

ing to solve the inference of HMM. The algorithm is adopted to 84

select a sequence of RPs by the maximizing the joint probability. 85

Let δt (si) be the probability of the path ending at the RP si at time 86
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Fig. 3. Filling the gap by using path table. The white nodes are queried from the path table.

t . The initial δ1(si) is set to b1(si). Thus, the δt (si) can be updated1

as follows:2

δt (si) = max
s∈S

[δt−1(s) · ps,si · bt (si)]

T (si, t) = argmax
s∈S

[δt−1(s) · ps,si · bt (si)]
(6)3

where bt (si) is the emission probability at time t , ps,si is the4

transition probability from state s to state si. T (si, t) is a table5

recording the selected state s of time t −1 when the path ends at6

the RP si at time t . After T − 1 updates, δT and the table T (si, T )7

are obtained. Then the last hidden state is determined with the8

maximal value δT according to the following equation.9

xT = argmax
s∈S

[δT (si)]. (7)10

Then the hidden state xT−1 in the most likely sequence is selected11

by looking up table as follows:12

xT−1 = T (xT , T ). (8)13

All the hidden states in the most likely sequence X =14

{x1, x2, . . . , xT } are obtained by recursive computation in Eq. (8).15

With the most likely sequence X , the matched RPs are se-16

lected. However, using the RPs in X as the result of map matching17

is not reasonable, since the transition between the time-adjacent18

RPs xt and xt+1 does not consider the other possible RPs on19

the path and may lead to the inferred path crossing walls (as20

illustrated in Fig. 3). Let (s1, si, sj) be the inference result, they are21

divided into two pairs of time-adjacent nodes, denoted by (s1, si)22

and (si, sj). These pairs are treated as the clues to look up the23

sequence of RPs from the path table. After looking up the table,24

two nodes sk1 and sk2 are inserted into the pair (si, sj) to obtain the25

path (si, sk1, sk2, sj) that describes the transition from si to sj. Then,26

the complete RP sequence (s1, si, sk1, sk2, sj) is taken as the map27

matching result which considers the spatial information of the28

indoor environment. The complete procedures of the proposed 29

PDMatching method are given in Algorithm 1. 30

Algorithm 1: Map Matching with Path Table
Input: RSSI sequence {rss1, rss2, ..., rssT }, RPs in the floor

plan S = {s1, s2, ..., sN}, fingerprint dataset F .
Output: RP Sequence X∗

1 Construct the transition probability matrix A according to
the methods described in Section 3.3;

2 Compute the emission probabilities
{b1(s1), b1(s2), ..., b1(sN )} according to the methods
described in Section 3.4;

3 Initialize δ1(si) = b1(si), X∗
= ∅;

4 for t = 2, 3, ..., T do
5 Compute the emission probabilities

{bt (s1), bt (s2), ..., bt (sN )};
6 Compute δt (si) and update T by Eq. (6);
7 Find the last matching RP xT by Eq. (7);
8 for t = T , T − 1, ..., 2 do
9 Find the matching RP xt−1 with T by using Eq. (8);

10 for t = 1, 2, ..., T − 1 do
11 Search the sequence {xt , ..., xt + 1} in the path table

using {xt , xt+1};
12 X∗

= X∗
∪ {xt , ..., xt+1};

13 return X∗.

31

4. Evaluation 32

Extensive experiments are conducted to evaluate PDMatching 33

in a real scene. Experimental data was collected on the second 34

floor of a typical museum environment (as shown in Fig. 4) 35

that has an area of 87 × 57 m2. The experimental environment 36

contains regions of open space and irregular shapes, which raise 37

the complexity of the radio prorogation. To build the fingerprint 38

database, the floor plan is divided into grids with a size of 1 m 39

and the centers of grids are considered as the RPs. In total, 543 40

RPs are obtained in the experimental environment. Fingerprints 41

were collected by standing at each RP for a while. Two smart- 42

phones, namely one Samsung note 4 and one Google nexus 6, were 43

used in the experiments and their Wi-Fi sampling frequency are 44

2.5 Hz and 1 Hz, respectively. In total, 8145 fingerprint records 45

were obtained from 384 heard APs and stored in the fingerprint 46

database. The value of receiving no signal is set to −100 dBm. 47

Six participants were recruited for conducting the experi- 48

ments. They were asked to walk along 18 planned paths and 49
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Fig. 4. The floor plan.

Fig. 5. Speed distribution of uniform speed data and varying speed data.

Table 2
Dataset Description.
Dataset Description

Number of RPs 543
Number of fingerprints 8145
Number of trajectories 180
Wi-Fi observations 23760
Total length of trajectory ∼ 41 km
Collection time of trajectory ∼ 10 h

repeat each path for 10 times for collecting Wi-Fi RSSI observa-1

tions and inertial sensor readings. In total, 180 trajectories are2

obtained with a total length of about 41 km. During the 10 times3

of walking on each path, the participants walked at a uniform4

speed for 6 times and at a varying speed for 4 times. Fig. 55

illustrates the statistical information of the walking speed in the6

two speed modes. The details of the data are shown in Table 2.7

To evaluate its superiority, the PDMatching is compared with8

several state-of-the-art methods, including VTrack [20], MapCraft9

[23], XINS [36], and SPBI-PF [34]. As the map matching methods10

aim to improve the positioning method by spatial information,11

the positioning results of a representative Wi-Fi fingerprinting12

positioning system called RADAR [44] are taken as the baseline13

to compare the performance of different map matching methods.14

VTrack and MapCraft are typical Bayesian network-based meth-15

ods, while XINS and SPBI-PF are common particle filter-based16

Fig. 6. Results under different sampling sizes.

methods. VTrack uses a HMM model to describe the positioning 17

trajectory. Although this method is designed for the outdoor map 18

matching, it can be easily utilized in the indoor environment by 19

treating the RPs as hidden states. The transition in the VTrack is 20

obtained by using adjacent RPs and the transition probability is 21

determined manually. Different from VTrack, MapCraft uses a CRF 22

to fuse multiple cues, such as landmarks, Wi-Fi RSSI, and inertial 23

sensor data, to infer the result of the map matching. In order to 24

make a fair comparison, PDMatching, VTrack, and MapCraft use 25

only the Wi-Fi RSSI observations as the cue to obtain the result 26

of map matching. XINS and SPBI-PF feed inertial sensor data and 27

Wi-Fi RSSI to the state model for propagating particles and use 28

spatial constraints to refine the positioning results. The number 29

of particles for the XINS and SPBI-PF is set to 5000. 30

4.1. Impact of RPs sampling size 31

To evaluate the impact of the interval size of RPs on the ac- 32

curacy of map matching methods, their performance is analyzed 33

under different sampling sizes, namely 1, 2, 4, 6 m. Fig. 6 shows 34

the positioning error of different methods under different sam- 35

pling sizes of RPs. It can be seen that the proposed PDMatching 36

is robust to the sampling size and performs the best among the 37

methods compared since the PDMatching considers both adjacent 38

and non-adjacent transitions between RPs. VTrack and MapCraft 39

are very sensitive to the sampling size of RPs. The positioning 40

error achieved by the VTrack and MapCraft is large when the 41

sampling size is small, which decreases as the sampling size in- 42

creases up to 4 m. This is because the VTrack and MapCraft allow 43

only the adjacent transition, and hence the length of the matching 44

sequence is greatly constrained by the sampling size. Compared 45

to VTrack and MapCraft, XINS and SPBI-PF are not significantly 46

affected by the sampling size as they use both inertial sensor 47

data and Wi-Fi RSSI for location estimation. However, XINS and 48

SPBI-PF require a large number of particles to achieve satisfactory 49

accuracy, which may lead to a huge computational cost, which 50

will be discussed in Section 4.6. 51

Fig. 7 shows the cumulative distribution function (CDF) of the 52

positioning errors of different methods under varying sampling 53

sizes. Most methods witness the best positioning accuracy when 54

the sampling size is 1 m except the MapCraft and VTrack that 55

achieve the best accuracy when the sampling size is 4 m. Specifi- 56

cally, the PDMatching performs the best with an accuracy of 80% 57

for the positioning error below 5 m (for the sampling size of 1 m), 58

which is followed by the SPBI-PF and the XINS (with the accuracy 59

of around 72% and 71%, respectively). The RADAR stands in the 60
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Fig. 7. CDF of different methods under different sampling sizes.

middle with an accuracy of around 68%, which is much higher1

the VTrack (around 27%) and MapCraft (around 30%). However,2

the positioning accuracy of the VTrack and MapCraft increases3

dramatically to around 68% (for the positioning error below 5 m)4

when the sampling size is 4 m. Overall, the performance curves5

of these methods move closer to each other when increasing the6

sampling size from 1 m to 4 m. When the sampling size increases7

to 6 m, the positioning accuracy below the error 5 m for the SPBI-8

PF (around 72%) is higher than that of the PDMatching (around9

68%). This might be explained that the SPBI-PF uses the extra10

information (inertial sensor data) to assist positioning, and is not11

affected by the sampling size of RPs. However, the PDMatching is12

still superior to other methods at the sampling size of 6 m.13

4.2. Impact of walking speed14

The walking speed of users affects the performance of map15

matching as the transition distance for one step will change at16

different walking speeds. A set of experiments were conducted17

to evaluate the robustness of the proposed PDMatching under18

different walking speeds. A sampling size of 1 m is used in the19

experimental analysis, which is a commonly-used sampling size20

as can be seen in [23,24,43]. From Fig. 8, it can be concluded that21

the PDMatching is more robust to varying walking speeds than22

other methods. In both speed modes, PDMatching outperforms23

the other methods in terms of positioning performance. The24

positioning errors for all the methods at the uniform speed mode25

are lower than at the varying speed mode. Among these methods26

compared, VTrack and MapCraft have a large positioning error as27

they allow only adjacent transitions, which result in the matched28

results to be constrained by the sampling sizes. The RADAR, XINS,29

and SPBI-PF perform better than the MapCraft and VTrack and are30

less affected by the varying walking speeds since the XINS and31

SPBI-PF utilize both inertial sensor data and Wi-Fi measurements32

while the RADAR does not use previous information for matching.33

4.3. Impact of Wi-Fi scanning frequency 34

The Wi-Fi scanning frequency of smartphones also affects the 35

transition distance for one step because it leads to a change 36

in transition probabilities and sequence inference. The data col- 37

lected at the uniform speed mode is used for map matching 38

under the sampling size 4 m where the VTrack and MapCraft 39

can achieve their best positioning accuracy. The Wi-Fi scanning 40

frequencies considered range from 0.4 Hz to 0.1 Hz. 41

As shown in Fig. 9, the results indicate that the PDMatch- 42

ing is robust to the change of Wi-Fi scanning frequency with a 43

slight increase in the positioning error from 3.95 m to 4.59 m 44

as the scanning frequencies decrease from 0.4 Hz to 0.1 Hz, 45

while the performance of the MapCraft and VTrack degrades 46

quickly. This is because the transition matrices of the MapCraft 47

and VTrack are constructed using only the adjacent RPs whose 48

sampling size limits the transition distance without considering 49

the Wi-Fi scanning frequency. Due to the change of the scan- 50

ning frequencies, the real transition distance might be beyond 51

the distance limited by the sampling size and therefore lead to 52

a large positioning error for these methods that do not allow 53

the non-adjacent transition. Since the PDMatching supports the 54

non-adjacent transition between RPs, it is possible to correctly 55

compute the transition probability and achieve a similar perfor- 56

mance under various scanning frequencies. It can also be seen 57

that the XINS and SPBI-PF are insensitive to the Wi-Fi scanning 58

frequency since they use inertial sensor readings to estimate the 59

transition distance that are independent of Wi-Fi measurements. 60

However, the extra resource for updating a great number of 61

particles by the sensor readings results in a larger time delay and 62

energy consumption. 63



FUTURE: 5422

Please cite this article as: P. Chen,X. Zheng, F. Guet al., Pathdistance-basedmapmatching forWi-Fi fingerprintingpositioning, FutureGenerationComputer Systems (2020),
https://doi.org/10.1016/j.future.2020.01.053.

P. Chen, X. Zheng, F. Gu et al. / Future Generation Computer Systems xxx (xxxx) xxx 9

Fig. 8. Performance under different speeds.

Fig. 9. The impact of Wi-Fi scanning frequency.

4.4. Comparison of different transition distance1

The distance between RPs is used to describe the transition2

probability. A proper distance is required to correctly calculate3

the transition probability that will determine the performance of4

map matching. To show the advantage of using path distance in5

map matching, the path distance-based map matching is com- 6

pared with those matching methods using the commonly-used 7

Euclidean distance, Manhattan distance, and constant distance (a 8

fixed value). 9

Fig. 10 gives the CDF of the positioning errors based on the 10

four distance metrics. The positioning results of the RADAR are 11

used as the baseline to compare the results of the proposed 12

PDMatching using four distance metrics. From Fig. 10, one can see 13

that the path distance metric is superior to other distance metrics. 14

This is because the path distance uses not only the coordinates, 15

which are also used in the Euclidean and Manhattan distances, 16

but also the spatial constraints imposed by obstacles such as 17

walls, which is not considered in other distance metrics. 18

Fig. 11 shows the matching results of the proposed PDMatch- 19

ing method using four transition distances. The path distance 20

leads to a better matching result than other distance metrics 21

as the path distance considers spatial constraints in the envi- 22

ronments. The constant transition distance witnesses the worst 23

matching results because it includes many adjacent matchings of 24

crossing walls. As the transition distance is fixed, the elements of 25

the transition probability matrix are the same, and therefore its 26

matching results are similar to that of the pointwise positioning 27

method such as the Nearest Neighbor (NN) matching. The match- 28

ing result of using the Euclidean distance is better than that using 29

the constant distance, but there are still some jump matchings as 30

the Euclidean distance does not consider the obstacles and some 31

Fig. 10. The CDF of the positioning error of using different distance metrics.
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Fig. 11. The trajectory estimated by the PDMatching using different distances. (a) Ground-truth. (b) Constant distance and NN trajectory. (c) Euclidean distance
trajectory. (d) Manhattan distance trajectory. (e) Path distance trajectory.

matchings may cross the walls. The Manhattan distance performs1

worse than the Euclidean distance. The Manhattan distance is2

popular for map matching in outdoor environments where the3

walking distance can be measured accurately with the blocks4

of regular shapes (e.g., rectangles), but it does not work well5

since indoor environments contain various regions of irregular6

shapes [10].7

4.5. Impact of the distance threshold δ8

The distance threshold δ is used to determine the radius of9

the region, in which the transition probabilities are considered10

as the same. For the transitions that are out of δ, the assigned11

probability value declines as the distance increases. Therefore, δ12

has an impact on the transition probability matrix and on the13

performance of map matching.14

Fig. 12 shows the impact of δ on the positioning accuracy.15

The threshold distance considered ranges from 1 m to 9 m and16

different sampling sizes (1, 2, 4, 6 m) are considered. It is obvious17

that a small value of δ results in a large error of map matching for18

all the sampling sizes. As a result, the performance with a small δ19

is not good, since the small δ favors transitions in a small region.20

As the increase of the δ, the positioning error of map matching21

decreases and achieves the best when δ is in the range (4, 6). It22

could be explained that the most possible transition distance for23

one step is about 5 m in the experiment. For the sampling size of 24

6 m, the transition distance needs to be larger than 6 m to ensure 25

the transition to other RPs rather than itself. When δ is larger than 26

6 m, the student’s t-distribution becomes flatter, causing that the 27

transition probabilities are similar. In that case, the transition 28

probability matrix contains little spatial information and is not 29

beneficial to the map matching. Therefore, the results with a large 30

value of δ are similar to the pointwise positioning methods. 31

4.6. Computational cost 32

The complexity of the PDMatching mainly comes from the 33

Dijkstra algorithm and the Viterbi inference. While the Dijkstra 34

algorithm is relatively computationally expensive, it can be con- 35

ducted on a PC or server in the offline phase, and hence it does 36

not affect the efficiency of the online location inference. Thus, the 37

main computational cost is from the Viterbi algorithm. Its com- 38

putational complexity is O(N2T ), where N is the number of RPs 39

and T is the length of the trajectory. The complexity of the pro- 40

posed method is similar to the traditional HMM-based matching 41

method since the transition matrices used in both methods have 42

the same size and both methods use the Viterbi for inference. 43

Fig. 13 indicates the computational cost of different methods 44

under different sampling sizes. The results show that the com- 45

putational costs of the PDMatching, VTrack, and MapCraft are 46
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Fig. 12. Impact of the distance threshold δ.

Fig. 13. Computational cost of different methods under varying sampling sizes.

heavily impacted by the RP sampling size and decrease quickly1

as the sampling size increases. The computational cost of the2

RADAR is less influenced by sampling sizes, and is much lower3

than the costs of other methods. This is because the RADAR is4

used to provide the initial location estimates that are taken as5

the input of other methods. Therefore, the computational costs6

of other methods contain the time consumed by the RADAR.7

The particle filtering-based methods (the XINS and SPBI-PF) have8

fixed computational costs under varying sampling sizes as they9

do not require information about RPs. Overall, the HMM-based10

methods have lower computational costs than particle filtering-11

based methods. The three HMM-based methods (PDMatching,12

VTrack, and MapCraft) have similar computational cost and could13

report the location result within 1 s, which is usually sufficient for14

most indoor positioning applications.15

5. Discussion16

The proposed PDMatching is based on a commonly-used HMM17

model, but it outperforms the state-of-the-art methods in terms18

of positioning accuracy (measured by mean positioning error) at19

different sampling sizes of RPs, walking speed modes, and Wi-Fi20

scanning frequencies. Specifically, the PDMatching performs the21

best among different methods with a mean positioning error of22

about 3.9 m at the sampling size 1 m and a mean positioning23

error of 4.9 m at the sampling size of 6 m. By contrast, MapCraft 24

and VTrack have a mean positioning error of 11.3 m and 12 m 25

at the sampling size of 1 m, and a mean positioning error of 26

5 m for both at the sampling size of 6 m. The mean positioning 27

errors for RADAR, XINS, and SPBI-PF stay in the middle, ranging 28

from 4.5 m to 6 m. While the sampling size of 1 m results 29

in the best positioning accuracy, a small sampling size means 30

more RPs are required to be collected, which needs more effort 31

on the site survey from the human and will lead to a higher 32

computational cost (e.g., hundreds of milliseconds) in the location 33

inference. Therefore, there is a trade-off between the positioning 34

accuracy and the computational cost. Besides, the PDMatching 35

outperforms other methods at varying speed modes, achieving 36

a mean positioning error of 3.4 m at the uniform speed mode 37

and 4.6 m at the varying speed mode. The mean errors of the 38

PDMatching at both modes are lower than XINS (4.1 m and 5.1 m, 39

respectively), SPBI-PF (4.3 m and 5.3 m, respectively), RADAR 40

(4.5 m and 5.4 m, respectively), MapCraft (10.1 m and 13.9 m, 41

respectively), and VTrack (10.6 m and 15 m respectively). In 42

addition, the PDMatching is robust to the scanning frequency of 43

Wi-Fi. It achieves a mean positioning error of 4 m and 4.6 m at 44

the scanning frequencies of 0.4 Hz and 0.1 Hz, respectively. By 45

contrast, the mean positioning errors for MapCraft and VTrack 46

increase from 4.1 m and 4 m to 13.8 m and 14.7 m when the scan- 47

ning frequency changes from 0.4 Hz to 0.1 Hz. RADAR, XINS, and 48

SPBI-PF are less affected by the different scanning frequencies, 49

and have a mean positioning error between 4.6 m and 5.2 m. The 50

reason why the PDMatching performs better than other methods 51

in different cases can be partially attributed to the use of both 52

adjacent and non-adjacent transitions. 53

Path distance can also be beneficial for the PDMatching to 54

obtain better positioning accuracy. In Fig. 10, we compare the 55

performance of PDMatching using different distance metrics. It 56

shows that the path distance can result in the best positioning 57

accuracy at about 97% (for positioning error below 10 m), which 58

is higher than the Euclidean distance (about 93%), constant dis- 59

tance (about 92%), and Manhattan distance (about 90%). This is 60

attributed to that the path distance can take into account spatial 61

constraints and eliminate invalid estimates, so as to improve the 62

positioning accuracy. 63

In the following, the threats to the validity [45] of the pro- 64

posed PDMatching are discussed. As the proposed method is 65

evaluated by comparing with the state-of-the-art methods over 66

the same dataset and using the same preprocessing techniques, 67

the effectiveness of the proposed method can be justified with the 68

best performance at varying cases as described above. However, 69

the limited number of the participants and the RSSI variation in 70

indoor environments may impose some threats on internal valid- 71

ity if one evaluates the method without comparison with other 72

methods. As for the external validity, the proposed method is 73

evaluated on the data collected in the experimental environment 74

containing regular and irregular regions (e.g., such as open space, 75

office room) and other common structures. This makes it practical 76

to be applied in other environments such as office buildings and 77

shopping malls. In other words, the proposed method can be 78

generalized to other environments and its external validity is 79

guaranteed. As for the construct validity, it measures the degree 80

to which a test supports the claim. The main claim of this study 81

is that the localization accuracy can be improved by using the 82

path distance and considering both adjacent and non-adjacent 83

transitions between RPs. This has been justified by experiments 84

and analysis at different cases. As for the statistical validity, the 85

collected trajectories have a total length of 41 km, which is much 86

longer than the experimental trajectories in existing relevant 87

studies. While the six participants involved may not be diverse 88

enough in quantitative research, it is sufficient to evaluate the 89

effectiveness of indoor positioning methods. 90
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6. Conclusion1

In this paper, a novel HMM-based map matching method2

(called PDMatching), which considers both adjacent and non-3

adjacent transitions, is proposed to address the problem of be-4

ing sensitive to the sampling size of RPs in conventional map5

matching methods. Experimental results show that the proposed6

method achieves best positioning accuracy with a mean position-7

ing error of about 4 m, which outperforms the state-of-the-art8

methods (MapCraft, VTrack, XINS, SPBI-PF, and RADAR). In terms9

of the accuracy of the positioning error below 5 m, the proposed10

PDMatching achieves an accuracy of about 80%, which is more11

than 8% higher than the other methods. This can be partially at-12

tributed to the use of both adjacent and non-adjacent transitions.13

Also, using the path distance to compute the transition matrix14

can result in a better positioning accuracy than using the other15

distance metrics (including Euclidean distance and Manhattan16

distance) with an improvement of more than 4% (the ratio of17

positioning error below 10 m).18

In future work, we will investigate more efficient inference19

methods to further reduce the computational cost of the proposed20

method. Also, we will apply the proposed PDMatching method in21

a large shopping mall to provide practical services for customers.22
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