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Accurate Step Length Estimation for Pedestrian
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Abstract— Pedestrian dead reckoning (PDR) is a popular
indoor localization method due to its independence of addi-
tional infrastructures and the wide availability of smart devices.
Step length estimation is a key component of PDR, which has
an important influence on the performance of PDR. Existing
step length estimation models suffer from various limitations
such as requiring knowledge of user’s height, lack of consid-
eration of varying phone carrying ways, and dependence on
spatial constraints. To solve these problems, we propose a deep
learning-based step length estimation model, which can adapt to
different phone carrying ways and does not require individual
stature information and spatial constraints. Experimental results
show that the proposed method outperforms existing popular
step length estimation methods.

Index Terms— Autoencoder, deep learning, neural networks,
positioning, smartphone sensors, step length.

I. INTRODUCTION

INDOOR localization has applications in a variety of
domains such as museum guide, shopping guide, search

and rescue, mobile advertising, and location-enabled social
networks [1]. The fundamental task of indoor localization is
to determine the location of an entity (e.g., a person) in
indoor spaces where the widely-used and well-established
global positioning system does not work. A lot of indoor
localization methods have been proposed and developed in [2],
which differ from each other in terms of the localization
techniques used, coverage, accuracy, cost of deployment, and
maintenance.

Among various indoor localization methods, pedestrian
dead reckoning (PDR) [3]–[6] has become one of the main-
stream methods due to the advent of smart devices such as
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smartphones, smart watches, smart bands, and smart glasses.
Compared to other indoor localization methods, PDR has
several advantages. First, unlike WiFi-based methods [7] or
Bluetooth-based methods [8], which depend on an infrastruc-
ture of access points or beacons, PDR does not require any
infrastructures. Second, it has no need for a laborious pretrain-
ing process, whereas WiFi-based or Bluetooth-based methods
usually need to collect fingerprints before localization, which
is time-consuming and labor-intensive. Third, it has wider
availability than other methods because of the popularity of
smart devices. Although WiFi is also accessible in many public
places, it is still challenging to provide continuous localization
service by using only WiFi access points since their coverage
is limited. By contrast, PDR has no coverage limitation. Given
an initial location, it can infer the location of the user in
real time by using the readings from inertial sensors (e.g.,
accelerometers, gyroscopes, and magnetometers) built in most
modern smart devices.

Step length estimation is one of the key components
of PDR, and its accuracy will directly affect the accu-
racy of PDR localization. Many methods have been pro-
posed for estimating the step length, mainly including
human gait-based [9]–[12], step frequency-based [13], [14],
and step counting (SC)-based methods [15], [16]. How-
ever, these step length estimation methods suffer from var-
ious limitations such as unsuitability for smartphone-based
applications [9]–[11], lack of consideration of different phone
poses [17], [18], being user dependent [13], [14], and relying
on spatial constraints [15], [16], [19], [20].

The purpose of this paper is to design a step model that
considers varying phone poses and walking speeds, works
for different users, and does not require spatial information
assistance. This is a challenging and complex task due to
three reasons. First, the step length varies from person to
person, resulting in the generic model being less accurate.
Second, the accelerometer readings, which are used to estimate
the step length, are affected by different phone poses and
user’s walking speeds. This leads to the difficulty in accurately
estimating the step length using accelerometer readings. Third,
the spatial constraints such as landmarks, which can be used
to calibrate the user’s step length, are not always available.

On the other hand, the recently-developed deep learning
is suitable for dealing with complex tasks, which has been
used in many domains such as image classification [21],
natural language processing and speech recognition [22], [23],
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activity recognition [24], and WiFi fingerprinting [25]. This
paper is especially motivated by the success of deep learning
for activity recognition that uses the same accelerometer
signals as the step length estimation does. However, activity
recognition using deep learning is based on classification,
while step length estimation is based on regression. In [26],
a bidirectional long short-term memory recurrent neural net-
work is used to achieve more robust step detection and
counting for PDR, after which the step length is estimated
by a linear model based on accelerometer data. In this paper,
we estimate the step length by directly using the stacked
autoencoders (SAs) [27], [28] based on both accelerometer
data and gyroscope data. The reason for fusing gyroscope data
is its usefulness for recognizing different phone poses, making
our step length estimation more robust. To our knowledge, this
paper is the first to directly estimate the step length using deep
learning.

The main contributions of this paper are as follows.
1) We propose a deep learning-based step length estimation

method that considers different walking speeds, phone
carrying ways, and can adapt to characteristics of dif-
ferent users.

2) We analyze the influence of different network con-
figurations on the accuracy of step length estimation.
The impacts of different number of layers, number of
neurons, and noise level are analyzed.

3) We compare our method with conventional step length
estimation methods and demonstrate that our method
outperforms the existing commonly-used methods.

The remainder of this paper is organized as follows.
In Section II, we review the related works. Section III
describes the proposed step length estimation method. The
experiments and results are presented in Section IV. Finally,
this paper is concluded in Section V.

II. RELATED WORK

PDR consists of two components: step length estimation
and heading estimation. The heading estimation can be
obtained from the compass readings (derived from the magne-
tometer readings and accelerometer readings) or the gyroscope
readings. However, the compass readings are susceptible to the
ferromagnetic materials and the gyroscope has the drift prob-
lem. One solution to achieve an accurate heading estimation is
to use a Kalman filter to combine the compass readings with
the gyroscope readings [16]. A more complex heading esti-
mation method is proposed in [29], which considers different
device poses.

The step length estimation is usually based on the
accelerometer readings. It involves the detection of step
events, which can be done by detecting the step cycle of
a user’s walking [15], [16], [34]. After this, different models
can be used to compute the step length. Since the low-cost
smartphone sensors are not very reliable and accurate, it is
inaccurate to estimate the step length by double integrating
the acceleration. Weinberg proposed a step length estimation
approach based on the maximum vertical displacement of the
hip, which can be approximated as a function of the maximum
and minimum of vertical accelerations [17]. Kim et al. [18]

also introduced a similar model that uses the acceleration
samples to estimate the step length. The disadvantage of these
acceleration samples-based models is that they do not consider
different phone carry ways and varying walking speeds, which
have an important effect on the estimation accuracy. A linear
model that considers walking speeds was used in [13] and [14],
but it requires knowledge of the user’s height, which may limit
its applicability since some users are not willing to provide
their individual information. There are other frequency-based
step length estimation methods [33], which consider different
walking speeds, but they also require user’s height information.
An adaptive step model is proposed in [19], which uses a
personalization algorithm to learn a personal model from a
generic step model. However, this personalization process is
based on spatial constraints from the floor plan, which are not
always available. In [12], a neural network-based method is
introduced, which considers walking frequency, variance of the
accelerometer signals, and the ground inclination. However,
it is based on the shoe-mounted accelerometer and, hence,
is unsuitable for smartphone-based applications. A knowledge-
based step length estimation method is proposed in [30],
which is based on fuzzy logic and multisensor fusion. This
method assumes that the device is mounted on the user’s
waist, which is a limiting assumption in practical applications.
Park et al. [31] proposed a walking speed estimation method
independent of device poses, which uses regularized kernel
methods. However, the method proposed by Park et al. [31]
requires to design features manually, which involves expert
knowledge. Hu et al. [32] developed a speed estimation
method by using a kinematic human-walking model based
on a waist-mounted accelerometer. The step length can be
estimated by combining SC with spatial information such as
landmarks or floor plans [15], [16]. Although these methods
eliminate the requirement for individual height information
and are independent of phone carrying ways, their assumption
that the user walks at a consistent speed is not always practical.

Recently, deep learning has become a hot research topic
since it can learn features of data automatically and has
shown excellent performance in different application domains
such as image classification [21], natural language processing
and speech recognition [22], [23], and playing games [35].
The commonly-used deep learning methods include SAs [36],
deep belief networks [37], convolutional neural networks [38],
and recurrent neural networks [39]. These methods are orig-
inally proposed for image classification and natural lan-
guage processing and speech recognition, but they have
also been using in human activity recognition [24], indoor
localization [25], and other domains. However, deep learning
has not been used for estimating the step length. To our
knowledge, this paper is the first to use deep learning for
step length estimation.

III. PROPOSED METHOD

A. Architecture

The architecture of the proposed step length estimation
method is illustrated in Fig. 1, mainly including segmen-
tation, feature learning, and step length estimation modules.
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Fig. 1. Architecture of the step length estimation using SA.

Fig. 2. Periodicity and repetitiveness of walking (the user walks six steps
with the phone in hand).

The smartphone is used to collect the accelerometer data and
gyroscope data, which are fed to a low-pass filter to remove
random noise. Next, both the smoothened accelerometer read-
ings and gyroscope readings are divided into segments with
each segment representing the data for one step. Then, these
segments are fed to the SA to learn useful features, which
is a training process. On the top layer is an affine regression
layer, which estimates the step length. In the following, we will
elaborate the key steps of our method.

B. Segmentation

Before computing the step length, we need to divide the
sensor readings into segments with each segment correspond-
ing to one step. This is done by detecting when a step event
happens.

The acceleration readings present a periodical and repetitive
pattern when the user walks, as shown in Fig. 2. To make the
detection method independent of the smartphone’s orientation,
the amplitude of the acceleration is utilized to detect the step

Fig. 3. Peak detection (the user walks six steps with the phone in hand).

event, namely

acct =
√

acc2
xt

+ acc2
yt

+ acc2
zt

(1)

where accxt , accyt , and acczt are the acceleration at time t
along the x-, y-, and z-axes, respectively. A low-pass filter is
used to improve the accuracy of peak detection.

Then, the peak detection method can be used to identify a
step event, which is based on the fact that the acceleration will
periodically present peaks when a user is walking, as shown
in Fig. 3. The peaks can be extracted by checking whether the
peak detection condition is met as follows:

peakt = (acct |acct >= (acct−K : acct−1)

&&acct >= (acct+1 : acct+K )) (2)

where K is a threshold used to help detect the right peaks,
the value of which is determined by both the sampling rate
of the accelerometer and the user’s walking speed. Note that
false peaks (e.g., as marked by the blue circle in Fig. 3) are
avoided by considering the user’s step periodicity. If the step
periodicity is beyond a certain interval, it will be considered
as a false peak. More details about false peak detection can
be found in [40]. After the peak detection, we can divide the
accelerometer readings and gyroscope readings into segments
that are used to compute the step length at different speeds and
phone poses. The step events can also be detected by utilizing
zero crossings, autocorrelation, and spectral analysis [3].

Once step events are detected, we are able to partition the
accelerometer readings and gyroscope readings along each
axis into segments. These segments are created using a sliding
window as follows:
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t+1, · · · , accx

t+m−1] (3)

s
accy
i = [accy
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t , accz
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gyrox
i = [gyrox

t , gyrox
t+1, · · · , gyrox

t+m−1] (6)

s
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t , gyroy
t+1, · · · , gyroy
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s
gyroz
i = [gyroz

t , gyroz
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where m is the segment size, which corresponds to the
number of sensor reading samples for one step. Since the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

sampling frequency of the low-cost smartphone accelerometer
and gyroscope is not very stable or the user may walk in
different speeds, we use the spline interpolation to generate
accelerometer reading and gyroscope reading samples of the
same size for each step, which is a prerequisite to use deep
neural networks.

C. Deep Model for Step Length Estimation

In this section, we present the proposed model for
step length estimation, which integrates the SA with a linear
regression model. The SA learns useful features for step length
estimation from accelerometer data and gyroscope data, which
are then fed to the regression layer to compute the step length.

We first introduce the feature learning of step length using
the SA, which encompasses multiple layers of autoencoders.
An autoencoder learns features automatically by minimizing
the error of reconstructing the input [27], [28]. Let xi be the
input vector at step i , consisting of acceleration segments
along three axes, gyroscope reading segments along three
axes, and the time interval Ti between two neighboring peaks
reflecting the step frequency, namely

xi = [
saccx
i , s

accy
i , saccz

i , sgyrox
i , s

gyroy
i , s

gyroz
i , Ti

]T (9)

where xi is a M × 1 vector and M = 6m + 1 (m is the
segment size). The encoding process of an autoencoder is done
by applying a sigmoid function f to the input vector

a = f (W1xi + b1) (10)

where W1 is a N × M encoding matrix, and N is the number
of input segments or features. a and b1 are the N-dimensional
activation vector and bias vector, respectively. The decoding
is done by performing a similar process

x̂i = g(W2a + b2) (11)

where g is the decoding mapping (a sigmoid function), W2 is
a M × N decoding matrix, and b2 is a M-dimensional
bias vector. The goal of feature learning is to minimize the
reconstruction error, which is done by minimizing the square
error loss function J (xi , x̂i )

J (xi, x̂i ) = 1

2

M∑

j=1

(x j − x̂ j )
2. (12)

To enable the SA to work even when the number of hidden
units is larger than the input dimension, we add a sparsity
term to the objective function. The resulting cost function Jae
is described as

Jae = J (xi, x̂i ) + β

N∑

j=1

KL(ρ||ρ̂ j ) (13)

where KL is the Kullback–Leibler divergence [41] between
the sparsity parameter ρ and the average activation ρ̂ j of
hidden unit j . β is the sparsity penalty.

The SA is composed of multiple layers of autoencoders
where the outputs of each layer are used as the inputs of
the next layer. The training of the SA is done by the greedy
layerwise training method. Once the SA is built, a supervised

regression layer is placed on its highest layer to compute the
step length. The global objective is to minimize the following
cost function, namely:

J = 1

2NL

NL∑

i=1

(θai − yi )
2 + λ

2
θθT (14)

where NL is the number of units on the last layer of the SA,
yi is the ground-truth step length corresponding to the input xi ,
and ai is the output from the last layer of the SA. θ is a
1 × NL weight vector connecting the units on the last layer of
the SA and the unit on the regression layer, and λ is a weight
decay parameter. The first term of (14) is the error between
the ground-truth step length and the estimated value, while
the second term is a weight decay term to avoid overfitting.

Algorithm 1: Proposed Step Length Estimation Model

Input : labeled training data set Dlabeled = {Xtr , Y },
unlabeled testing data set Dtest = {Xte}

Output: Step length sequence L of the unlabeled testing
data

1 // Initialization:
2 Initialize the network parameters
3 Segment the accelerometer data and gyroscope data by

detecting the peaks of the amplitude of accelerometer
readings

4 Stabilize the number of sensor samples for each step by
the spline interpolation

5 Form a sequence of segments with the same number of
samples {x1, x2, · · · , xN }

6 // Training from the first layer (l = 1):
7 Set the layer index l to 1;
8 repeat
9 Train the l-th layer of the SA using the data

sequences, and obtain the encoding function f (l)

10 Compute the outputs of the l-th layer by using the
learned function f (l) on the input
{xl−1

1 , xl−1
2 , · · · , xl−1

N }, which will feed to the
l + 1-th layer as inputs

11 until l + + == L;
12 Use labeled data set Dlabeled to train the top layer

(regression layer)
13 Fine-tune the entire network through backpropagation
14 // Testing:
15 Use the trained network to predict the step length

sequence L of data set Dtest

The complete procedures of the proposed step length
estimation model are shown in Algorithm 1. It takes
as input a set of training samples Xtr with the corre-
sponding ground-truth step length Y to train the network.
This algorithm starts by initializing the network parame-
ters. Specifically, we adopt the weight initialization strategy
in [42], which involves initializing the weights Wl

i j to val-
ues that are randomly drawn from the interval [−((6/(nin+
nout + 1)))1/2], ((6/(nin + nout + 1)))1/2], where nin is the
number of inputs feeding into a node and nout is the number
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Fig. 4. Phone poses in the experiments.

of units that a node feeds into. The biases bl
i are set to zero.

Then, the accelerometer readings and gyroscope readings are
divided into segments by conducting peak detection on the
amplitude of accelerometer readings. The spline interpolation
is applied to make these segments have an equal number of
samples. Then, the network is trained in a layerwise way. The
labeled data set is used to train the linear regression layer on
the top. A fine-tuning operation is then followed to optimize
the parameters of all layers through backpropagation. Once
the training is done, the network can be used to compute the
step length of given samples.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The proposed step length estimation method was evaluated
by a series of experiments. Twelve participants were asked
to collect data using two phones (Samsung Galaxy S III
and S IV). During the data collection, the participants were
required to count the number of steps they took, which was
used to calibrate the peak detection to make the ground-truth
step length more accurate. Data collection includes training
data collection and testing data collection. In the process of
collecting training data, participants were asked to walk along
a path of 50 m in four motion modes (slow walking, normal
walking, fast walking, and jogging) and two phone carrying
ways (swinging with the arm, and in the pocket, as shown
in Fig. 4), respectively. Each trajectory of collecting training
data corresponds to one mode and one phone carrying way,
which means that the participant walked at a constant pace
and carried the phone in a fixed way. This is to guarantee the
accuracy of the training data. When a user walks at a constant
pace, his/her step length for each step is approximately the
same. The ground-truth step length for training data can be
then obtained by dividing the length of the path by the number
of steps walked. In the testing data collection, the participants
were asked to take 100 m for four times in two motion modes
(fixed speed mode and variable speed mode) and two phone
carrying ways, respectively. During the process of variable
speed mode, the users were asked to change their walking
speeds to include data of different walking speeds. The motion
speed of users varies from 3.4 to 13.5 km/h, which is computed
by dividing the length of the test path by the time consumed
to travel the given path. Table I shows the height and gender
of the participants.

TABLE I

USER PROFILE

TABLE II

EXPERIMENT CONFIGURATION

TABLE III

LIST OF HYPERPARAMETERS FOR DEEP NETWORKS

Table II gives the experiment configuration. In total,
we collected training data of 76 valid trajectories (consisting
of 4834 data segments) and testing data of 38 valid trajectories
(comprising 4784 data segments). Each segment is a vector
of 193 elements, including 96 acceleration samples (32 sam-
ples from each axis), 96 gyroscope samples (32 samples
from each axis), and one time interval representing the step
frequency between two neighboring peaks.

B. Hyperparameter Setting

Table III gives a list of the hyperparameters we considered
in this paper. To reduce the selection space, we let all the
hidden layers share the same number of units and the same
learning rate. It should be noted that the bold value for each
hyperparameter is used in the following analysis when there
is no mention specifically.

C. Step Length Estimation Accuracy

We use the relative error to measure the performance of our
step length estimation model, namely

e =
∣∣∣yg − ∑N

i=1 ŷi

∣∣∣
yg

× 100% (15)
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Fig. 5. Training curve.

Fig. 6. Test error of the proposed method using different sensors.

where ŷi is the estimated step length for the i th step, and yg

is the length of the testing path. As the performance of SAs is
affected by the initial values of network parameters, we ran the
program 10 × for each parameter setting and used the average
performance to analyze the effect of different parameters and
variables.

We first give the training curve as shown in Fig. 5, which
implies that the network is sufficiently trained with the avail-
able samples since it converges toward the end and the test
error rate shows little improvement with more samples. The
average training error using 10-fold cross validation on the
training data set is about 0.3%, showing the sufficiency of
network training.

Then, we compare the performance of the proposed
step length estimation method using accelerometer readings
only and that using the combination of accelerometer readings
and gyroscope readings. As demonstrated in Fig. 6, the test
error of using the combination of accelerometer data and gyro-
scope data (3.13%) is lower than that of using accelerometer
data only (3.36%), though both use the same network structure
(two layers, 500 units per layer). This is attributed to that
the gyroscope readings are helpful in determining different
phone carrying ways. Therefore, in the following, we use the
combination of both sensor data to analyze the effect of other
parameters and variables.

Fig. 7. Test error of the proposed method for different users.

Fig. 8. Test error of the proposed method in different phone poses.

Fig. 7 shows the test error of the proposed method for
different users. Note that although both training data set and
testing data set were collected by the 12 users, they are from
different trajectories and, hence, are independent. It can be
seen that the step length estimation error varies from user to
user since different users have varying walking characteristics.
The user 11 witnesses a large error, and this might be due to
the walking characteristics he/she behaved in collecting testing
data are different from these characteristics in the training data
set (including from herself and other users). The average test
error for the 12 users is about 3.1%.

Next, we analyze the influence of different phone poses on
the proposed step length estimation method. It is interesting
to see from Fig. 8 that the error for the Swing phone pose
(2.85%) is much smaller than that for the pocket case (3.35%).
This is because when the user walks naturally with the phone
swinging with the arm, the pace of swinging arm is consistent
with the pace of taking steps. On the other hand, there may be
certain noisy movement between the phone and the trouser’s
pocket when the phone is put in the trouser’s pocket, which
contributes to a larger error in the step length estimation.

The effect of different testing speed modes is shown
in Fig. 9. The case of fixed testing speed mode witnesses
a smaller error (2.91%) than that of the variable speed mode
(3.22%). This is because the users were free to change their
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Fig. 9. Test error of the proposed method in different speed modes.

Fig. 10. Test error of using different layers.

walking speeds in the variable speed mode, and therefore, it is
more likely to introduce more uncertainty in the testing data.

D. Effect of Network Structure

We analyze the effect of different number of layers and
number of units on the step length estimation. Other network
parameters such as learning rate α and weight of sparsity
penalty term β are simply set to the default values as shown
in Table III, which are empirically determined.

Fig. 10 shows the step length estimation error of using
different number of layers with 500 units per layer, from
which we can see that the best performance is achieved by the
network with two layers and increasing the number of layers
does not improve the step length estimation. This is because
there are no sufficient data segments to well train a complex
network with many layers.

Fig. 11 shows the performance of the proposed step length
estimation model with different number of neuron units. It is
clear that the general trend in the error is that using more
neurons per layer will decrease the estimation error. This
is especially obvious when increasing the number of units
from 50 to 100, and further to 200, the corresponding error
decreases from 3.80% to 3.52% and further to 3.19%. After
the number of units reaches 500 per units, the further increase
of units does not significantly reduce the error but will

Fig. 11. Test error of using different units per layer.

Fig. 12. Performance comparison with commonly-used methods.

considerably increase the computational cost. Therefore, there
is usually a tradeoff between the performance and the cost of
computation and storage.

E. Comparison With Popular Methods

We compare the proposed step length estimation model
with the commonly-used methods, including the Weinberg
model [17], Kim model [18], linear model [14], and SC-based
method [15]. The parameters of these methods are calcu-
lated in a way that minimizes the training error by using
the training data set. The comparison results are shown
in Fig. 12 and Table IV.

Generally, our method outperforms these commonly-used
step length estimation methods. For all the users, our method
can achieve a good estimation accuracy with an average
error of 3.01%. Among these commonly-used methods, the
SC-based method and the linear step length model perform
much better than the model-based methods (Weinberg model
and Kim model). This is because the linear step length model
considers the user’s height and step frequency, which is more
robust against different walking speeds and phone poses than
model-based methods. The reason why the SC-based method
performs the best among conventional methods might be that
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TABLE IV

PERFORMANCE COMPARISON WITH COMMONLY-USED METHODS

Fig. 13. Estimation error for new users.

the average step length for each step in the testing data set
is close to that in the training data set. The performance of
the Weinberg model (19.48%) and the Kim model (20.79%) is
similar since both of them take as input the acceleration and a
parameter that is related to user’s height, but they do neither
consider step frequency nor different phone poses.

Overall, the commonly-used step length estimation methods
are user specific, which means that the model trained by a
user does not work well for another. Also, they usually have
the need for users’ information such as height. However, our
method can adapt to characteristics of different users, varying
walking speeds, and does not require individual information.

F. Estimation Error for New Users

To analyze the performance of the proposed method with
data from a new user, we select in turn a user from the
12 users. The data from the remaining 11 users are used as
training data while the data from the selected user as test
data. Fig. 13 demonstrates the estimation error of the proposed
method for a new user. Overall, the average error of estimating
the step length of a random new user is about 6.85%, which
is higher than the 3.01% achieved by using data from all
users. The relatively high average error of step length is mainly
caused by user 8 and user 11, who experience an error of about
13% and 14%, respectively. This is due to the two participants
(user 8 and user 11) share less common walking characteristics
with other participants. Another possible explanation is that
these participants have less uniform walking characteristics
and their step lengths tend to vary between different walking
modes resulting in large testing errors. It is expected that the

TABLE V

TRAINING AND TEST TIME

estimation error will be reduced by using more data from users
of different heights and walking characteristics.

G. Computational Cost

The computational complexity of the proposed method is
O(NL ·M+L ·N2

L ), where L is the number of layers, NL is the
number of neurons per layer, and M is the dimension of input
data. Table V shows the training and test time of conducting
the proposed method with different network parameters on the
whole training data and test data. The proposed method was
implemented in MATLAB and conducted on a PC equipped
with an Intel Core i5-8400 CPU at 2.80 GHz and a memory of
Ramaxel DDR4 8G. It can be seen that both training time and
test time increase as the number of layers or the number of
neurons per layer increases. Note that these computation times
are indicative. We expect that more optimized implementations
will be able to run in real time on modern smartphones and
other smart devices.

V. CONCLUSION

This paper presents a deep learning-based method for
accurately estimating the step length of a user, which is
important for the PDR indoor localization. The proposed
method can adapt to characteristics of different users, varying
walking speeds, and phone poses and has no need for spa-
tial constraints. The influence of different values of network
parameters is analyzed, including the number of layers and
number of neurons. By comparing with existing commonly
used step length estimation methods, we show the superiority
of our method.

In the future, we will investigate how to obtain training
data automatically by crowdsourcing, which will significantly
increase the volume of training data. This will undoubtedly
further improve the performance of the proposed method.

REFERENCES

[1] J. Shang, X. Hu, F. Gu, D. Wang, and S. Yu, “Improvement schemes
for indoor mobile location estimation: A survey,” Math. Problems Eng.,
vol. 2015, Mar. 2015, Art. no. 397298.

[2] P. Davidson and R. Piché, “A survey of selected indoor positioning
methods for smartphones,” IEEE Commun. Surveys Tuts., vol. 9, no. 2,
pp. 1347–1370, 2nd Quart., 2016.

[3] R. Harle, “A survey of indoor inertial positioning systems for pedes-
trians,” IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 1281–1293,
3rd Quart., 2013.

[4] Y. Li, P. Zhuang, X. Niu, Y. Zhang, H. Lan, and N. El-Sheimy,
“Real-time indoor navigation using smartphone sensors,” in Proc.
IEEE Int. Conf. Indoor Positioning Indoor Navigat. (IPIN), Oct. 2015,
pp. 1–10.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GU et al.: ACCURATE STEP LENGTH ESTIMATION FOR PDR LOCALIZATION USING SAs 9

[5] A. Perttula, H. Leppäkoski, M. Kirkko-Jaakkola, P. Davidson, J. Collin,
and J. Takala, “Distributed indoor positioning system with inertial
measurements and map matching,” IEEE Trans. Instrum. Meas., vol. 63,
no. 11, pp. 2682–2695, Nov. 2014.

[6] B. Zhou, Q. Li, Q. Mao, W. Tu, and X. Zhang, “Activity sequence-
based indoor pedestrian localization using smartphones,” IEEE Trans.
Human-Mach. Syst., vol. 45, no. 5, pp. 562–574, Oct. 2015.

[7] M. Raspopoulos, “Multidevice map-constrained fingerprint-based indoor
positioning using 3-D ray tracing,” IEEE Trans. Instrum. Meas., vol. 67,
no. 2, pp. 466–476, Feb. 2018.

[8] P. Kriz, F. Maly, and T. Kozel, “Improving indoor localization using
bluetooth low energy beacons,” Mobile Inf. Syst., vol. 2016, Apr. 2016,
Art. no. 2083094.

[9] I. Tien, S. D. Glaser, R. Bajcsy, D. S. Goodin, and M. J. Aminoff,
“Results of using a wireless inertial measuring system to quantify gait
motions in control subjects,” IEEE Trans. Inf. Technol. Biomed., vol. 14,
no. 4, pp. 904–915, Jul. 2010.

[10] J. Jahn, U. Batzer, J. Seitz, L. Patino-Studencka, and J. G. Boronat,
“Comparison and evaluation of acceleration based step length estimators
for handheld devices,” in Proc. IEEE Int. Conf. Indoor Positioning
Indoor Navigat. (IPIN), Sep. 2010, pp. 1–6.

[11] D. Alvarez, R. C. González, A. López, and J. C. Alvarez, “Comparison
of step length estimators from weareable accelerometer devices,” in
Proc. IEEE. Conf. Eng. Med. Biol. Soc., Aug. 2006, pp. 5964–5967.

[12] S. Y. Cho and C. G. Park, “MEMS based pedestrian navigation system,”
J. Navigat., vol. 59, no. 1, pp. 135–153, Jan. 2006.

[13] R. Chen, L. Pei, and Y. Chen, “A smart phone based PDR solution for
indoor navigation,” in Proc. 24th Int. Tech. Meeting Satell. Division Inst.
Navigat. (ION GNSS+), Sep. 2011, pp. 1404–1408.

[14] V. Renaudin, M. Susi, and G. Lachapelle, “Step length estimation using
handheld inertial sensors,” Sensors, vol. 12, no. 7, pp. 8507–8525, 2012.

[15] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and
R. R. Choudhury, “No need to war-drive: Unsupervised indoor localiza-
tion,” in Proc. 10th Int. Conf. Mobile Syst., Appl., Services (MobiSys),
Jun. 2012, pp. 197–210.

[16] J. Shang, F. Gu, X. Hu, and A. Kealy, “APFiLoc: An infrastructure-
free indoor localization method fusing smartphone inertial sen-
sors, landmarks and map information,” Sensors, vol. 15, no. 10,
pp. 27251–27272, 2015.

[17] H. Weinberg, “Using the ADXL202 in pedometer and personal nav-
igation applications,” Analog Devices, Norwood, MA, USA, Appl.
Note AN-602, 2002, pp. 1–6, vol. 2, no. 2. [Online]. Available:
http://www.bdtic.com/DownLoad/ADI/AN-602.pdf

[18] J. W. Kim, H. J. Jang, D.-H. Hwang, and C. Park, “A step, stride and
heading determination for the pedestrian navigation system,” Position-
ing, vol. 3, nos. 1–2, pp. 273–279, 2004.

[19] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A reliable and
accurate indoor localization method using phone inertial sensors,” in
Proc. ACM Conf. Ubiquitous Comput., Sep. 2012, pp. 421–430.

[20] J. Qian, L. Pei, J. Ma, R. Ying, and P. Liu, “Vector graph assisted
pedestrian dead reckoning using an unconstrained smartphone,” Sensors,
vol. 15, no. 3, pp. 5032–5057, 2015.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2012, pp. 1097–1105.

[22] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
2014, pp. 3104–3112.

[23] R. Socher, E. H. Huang, J. Pennin, C. D. Manning, and A. Y. Ng,
“Dynamic pooling and unfolding recursive autoencoders for paraphrase
detection,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2011,
pp. 801–809.

[24] C. A. Ronao and S.-B. Cho, “Deep convolutional neural networks for
human activity recognition with smartphone sensors,” in Proc. Int. Conf.
Neural Inf. Process., Nov. 2015, pp. 46–53.

[25] X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based fingerprinting
for indoor localization: A deep learning approach,” IEEE Trans. Veh.
Technol., vol. 66, no. 1, pp. 763–776, Jan. 2017.

[26] M. Edel and E. Köppe, “An advanced method for pedestrian dead
reckoning using BLSTM-RNNs,” in Proc. Int. Conf. Indoor Positioning
Indoor Navigat. (IPIN), Oct. 2015, pp. 1–6.

[27] H.-C. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach,
“Stacked autoencoders for unsupervised feature learning and multiple
organ detection in a pilot study using 4D patient data,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1930–1943, Aug. 2013.

[28] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, no. 12, pp. 3371–3408, Dec. 2010.

[29] N. Roy, H. Wang, and R. R. Choudhury, “I am a smartphone and i can
tell my user’s walking direction,” in Proc. ACM 12th Annu. Int. Conf.
Mobile Syst., Appl., Services, 2014, pp. 329–342.

[30] Y.-C. Lai, C.-C. Chang, C.-M. Tsai, S.-C. Huang, and K.-W. Chiang,
“A knowledge-based step length estimation method based on fuzzy
logic and multi-sensor fusion algorithms for a pedestrian dead reckoning
system,” ISPRS Int. J. Geo-Inf., vol. 5, no. 5, p. 70, 2016.

[31] J. G. Park, A. Patel, D. Curtis, S. Teller, and J. Ledlie, “Online pose
classification and walking speed estimation using handheld devices,” in
Proc. ACM Conf. Ubiquitous Comput., 2012, pp. 113–122.

[32] J.-S. Hu, K.-C. Sun, and C.-Y. Cheng, “A kinematic human-walking
model for the normal-gait-speed estimation using tri-axial acceleration
signals at waist location,” IEEE Trans. Biomed. Eng., vol. 60, no. 8,
pp. 2271–2279, Aug. 2013.

[33] Q. Tian, Z. Salcic, K. Wang, and Y. Pan, “A multi-mode dead reckoning
system for pedestrian tracking using smartphones,” IEEE Sensors J.,
vol. 16, no. 7, pp. 2079–2093, Apr. 2016.

[34] A. Brajdic and R. Harle, “Walk detection and step counting on uncon-
strained smartphones,” in Proc. ACM Int. Conf. Pervasive Ubiquitous
Comput. (UbiComp), Sep. 2013, pp. 225–234.

[35] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[36] J. Gehring, Y. Miao, F. Metze, and A. Waibel, “Extracting deep
bottleneck features using stacked auto-encoders,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., May 2013, pp. 3377–3381.

[37] X.-L. Zhang and J. Wu, “Deep belief networks based voice activity
detection,” IEEE Trans. Audio, Speech Language Process., vol. 21, no. 4,
pp. 697–710, Apr. 2013.

[38] T. N. Sainath et al., “Deep convolutional neural networks for large-scale
speech tasks,” Neural Netw., vol. 64, pp. 39–48, Apr. 2015.

[39] F. J. Ordóñez and D. Roggen, “Deep convolutional and LSTM recurrent
neural networks for multimodal wearable activity recognition,” Sensors,
vol. 16, no. 1, p. 115, 2016.

[40] F. Gu, K. Khoshelham, J. Shang, F. Yu, and Z. Wei, “Robust and accurate
smartphone-based step counting for indoor localization,” IEEE Sensors
J., vol. 17, no. 11, pp. 3453–3460, Jun. 2017.

[41] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.

[42] A. Y. Ng, J. Ngiam, C. Y. Foo, Y. Mai, and C. Suen. (Nov. 2017). Sparse
Autoencoder/Preprocessing: PCA and Whitening. [Online]. Available:
http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

Fuqiang Gu (S’16), photograph and biography not available at the time of
publication.

Kourosh Khoshelham, photograph and biography not available at the time
of publication.

Chunyang Yu, photograph and biography not available at the time of
publication.

Jianga Shang (M’12), photograph and biography not available at the time of
publication.


